Publications by authors named "Yemima Budirahardja"

Tumor suppressor p53 plays a central role in response to DNA damage. DNA-damaging agents modulate nuclear actin dynamics, influencing cell behaviors; however, whether p53 affects the formation of nuclear actin filaments remains unclear. In this study, we found that p53 depletion promoted the formation of nuclear actin filaments in response to DNA-damaging agents, such as doxorubicin (DOXO) and etoposide (VP16).

View Article and Find Full Text PDF

Cancer cells generally exhibit increased iron uptake, which contributes to their abnormal growth and metastatic ability. Iron chelators have thus recently attracted attention as potential anticancer agents. Here, we show that deferriferrichrysin (Dfcy), a natural product from Aspergillus oryzae acts as an iron chelator to induce paraptosis (a programmed cell death pathway characterized by ER dilation) in MCF-7 human breast cancer cells and H1299 human lung cancer cells.

View Article and Find Full Text PDF

The extracellular matrix (ECM) surrounding cancer cells becomes stiffer during tumor progression, which influences cancer cell behaviors such as invasion and proliferation through modulation of gene expression as well as remodeling of the actin cytoskeleton. In this study, we show that encoding matrix metalloproteinase (MMP)-24 is a novel target gene of Yes-associated protein (YAP), a transcription coactivator known as a mechanotransducer. We first examined the effect of substrate stiffness on expression in MCF-7 human breast cancer cells and showed that the expression of was significantly higher in cells grown on stiff substrates than that on soft substrates.

View Article and Find Full Text PDF

Tumor suppressor p53 plays an integral role in DNA-damage induced apoptosis, a biological process that protects against tumor progression. Cell shape dramatically changes when cells undergo apoptosis, which is associated with actomyosin contraction; however, it remains entirely elusive how p53 regulates actomyosin contraction in response to DNA-damaging agents. To identify a novel p53 regulating gene encoding the modulator of myosin, we conducted DNA microarray analysis.

View Article and Find Full Text PDF

The evolutionarily conserved family of AP-2 transcription factors (TF) regulates proliferation, differentiation, and apoptosis. Mutations in human AP-2 TF have been linked with bronchio-occular-facial syndrome and Char Syndrome, congenital birth defects characterized by craniofacial deformities and patent ductus arteriosus, respectively. How mutations in AP-2 TF cause the disease phenotypes is not well understood.

View Article and Find Full Text PDF

Glycosylphosphatidylinositol (GPI) is a post-translational modification resulting in the attachment of modified proteins to the outer leaflet of the plasma membrane. Tissue culture experiments have shown GPI-anchored proteins (GPI-APs) to be targeted to the apical membrane of epithelial cells. However, the in vivo importance of this targeting has not been investigated since null mutations in GPI biosynthesis enzymes in mice result in very early embryonic lethality.

View Article and Find Full Text PDF

The early Caenorhabditis elegans embryo is an attractive model to investigate evolutionarily conserved cellular mechanisms. However, there is a paucity of automated methods to gather quantitative information with subcellular precision in this system. We developed ASSET (Algorithm for the Segmentation and the Standardization of C.

View Article and Find Full Text PDF

The core machinery that drives the eukaryotic cell cycle has been thoroughly investigated over the course of the past three decades. It is only more recently, however, that light has been shed on the mechanisms by which elements of this core machinery are modulated to alter cell cycle progression during development. It has also become increasingly clear that, conversely, core cell cycle regulators can play a crucial role in developmental processes.

View Article and Find Full Text PDF

Acquisition of lineage-specific cell cycle duration is an important feature of metazoan development. In Caenorhabditis elegans, differences in cell cycle duration are already apparent in two-cell stage embryos, when the larger anterior blastomere AB divides before the smaller posterior blastomere P1. This time difference is under the control of anterior-posterior (A-P) polarity cues set by the PAR proteins.

View Article and Find Full Text PDF

The spindle assembly checkpoint ensures accurate chromosome segregation by delaying anaphase initiation until all chromosomes are properly attached to the mitotic spindle. Here, we show that the previously reported c-Jun amino-terminal kinase (JNK) inhibitor SP600125 effectively disrupts spindle checkpoint function in a JNK-independent fashion. SP600125 potently inhibits activity of the mitotic checkpoint kinase monopolar spindle 1 (Mps1) in vitro and triggers efficient progression through a mitotic arrest imposed by spindle poisons.

View Article and Find Full Text PDF