Publications by authors named "Yelle R"

Article Synopsis
  • This study focuses on the analysis of water (HO) and heavy water (HDO) profiles in the mesosphere of Venus using data from Venus Express, revealing significant increases in both substances and a notable rise in the D/H ratio with altitude.
  • Two main hypotheses are proposed to explain these changes: isotopic fractionation due to photolysis or phase change processes connected to sulfuric acid aerosols, with the latter accounting for the observed rapid changes in water vapor and aerosols.
  • The findings imply that the varying altitudes are essential for understanding Venus's deuterium and hydrogen reservoirs, and that these altitude changes directly impact the rates at which hydrogen and deuterium escape, suggesting a need for evolutionary models to factor in
View Article and Find Full Text PDF

Mars' water history is fundamental to understanding Earth-like planet evolution. Water escapes to space as atoms, and hydrogen atoms escape faster than deuterium giving an increase in the residual D/H ratio. The present ratio reflects the total water Mars has lost.

View Article and Find Full Text PDF

Despite its Earth-like size and source material, Venus is extremely dry, indicating near-total water loss to space by means of hydrogen outflow from an ancient, steam-dominated atmosphere. Such hydrodynamic escape likely removed most of an initial Earth-like 3-km global equivalent layer (GEL) of water but cannot deplete the atmosphere to the observed 3-cm GEL because it shuts down below about 10-100 m GEL. To complete Venus water loss, and to produce the observed bulk atmospheric enrichment in deuterium of about 120 times Earth, nonthermal H escape mechanisms still operating today are required.

View Article and Find Full Text PDF

In situ measurements of ionospheric and thermospheric temperatures are experimentally challenging because orbiting spacecraft typically travel supersonically with respect to the cold gas and plasma. We present temperatures in Mars' ionosphere derived from data measured by the SupraThermal And Thermal Ion Composition instrument onboard the Mars Atmosphere and Volatile EvolutioN spacecraft. We focus on data obtained during nine special orbit maneuvers known as Deep Dips, during which MAVEN lowered its periapsis altitude from the nominal 150 to 120 km for 1 week in order to sample the ionospheric main peak and approach the homopause.

View Article and Find Full Text PDF

Mars has lost most of its once-abundant water to space, leaving the planet cold and dry. In standard models, molecular hydrogen produced from water in the lower atmosphere diffuses into the upper atmosphere where it is dissociated, producing atomic hydrogen, which is lost. Using observations from the Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution spacecraft, we demonstrate that water is instead transported directly to the upper atmosphere, then dissociated by ions to produce atomic hydrogen.

View Article and Find Full Text PDF

The Pioneer and Voyager spacecraft made close-up measurements of Saturn's ionosphere and upper atmosphere in the 1970s and 1980s that suggested a chemical interaction between the rings and atmosphere. Exploring this interaction provides information on ring composition and the influence on Saturn's atmosphere from infalling material. The Cassini Ion Neutral Mass Spectrometer sampled in situ the region between the D ring and Saturn during the spacecraft's Grand Finale phase.

View Article and Find Full Text PDF

Assessment of clinical competence is complex and inference based. Trustworthy and defensible assessment processes must have favourable evidence of validity, particularly where decisions are considered high stakes. We aimed to organize, collect and interpret validity evidence for a high stakes simulation based assessment strategy for certifying paramedics, using Kane's validity framework, which some report as challenging to implement.

View Article and Find Full Text PDF

The history of Mars' atmosphere is important for understanding the geological evolution and potential habitability of the planet. We determine the amount of gas lost to space through time using measurements of the upper-atmospheric structure made by the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. We derive the structure of Ar/Ar between the homopause and exobase altitudes.

View Article and Find Full Text PDF

The Mars Atmosphere and Volatile EvolutioN (MAVEN) Neutral Gas and Ion Mass Spectrometer (NGIMS) provides sensitive detections of neutral gas and ambient ion composition. NGIMS measurements of nine atomic and molecular neutral species, and their variation with altitude, latitude, and solar zenith angle are reported over several months of operation of the MAVEN mission. Sampling NGIMS signals from multiple neutral species every several seconds reveals persistent and unexpectedly large amplitude density structures.

View Article and Find Full Text PDF

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits.

View Article and Find Full Text PDF

Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin.

View Article and Find Full Text PDF

Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions.

View Article and Find Full Text PDF

The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation.

View Article and Find Full Text PDF

Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses.

View Article and Find Full Text PDF

The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N(2)/CH(4)/CO gas mixtures of 96.

View Article and Find Full Text PDF

The large abundance of NH3 in Titan's upper atmosphere is a consequence of coupled ion and neutral chemistry. The density of NH3 is inferred from the measured abundance of NH4+. NH3 is produced primarily through reaction of NH2 with H2CN, a process neglected in previous models.

View Article and Find Full Text PDF

Experimental simulations of the initial steps of the ion-molecule reactions occurring in the ionosphere of Titan were performed at the synchrotron source Elettra in Italy. The measurements consisted of irradiating gas mixtures with a monochromatic photon beam, from the methane ionization threshold at 12.6 eV, up to and beyond the molecular nitrogen dissociative ionization threshold at 24.

View Article and Find Full Text PDF

Aldehyde- and ketone-derived cyanohydrins were reacted with the nitrile hydration catalysts [PtCl(PR(2)OH){(PR(2)O)(2)H}] (1) and Cp(2)Mo(OH)(OH(2))(+) (2) under a variety of hydration reaction conditions. In general, the cyanohydrins were hydrated to the amides rather slowly using these catalysts, but no subsequent hydrolysis of the amide products occurred. Catalyst 2 was much less reactive than catalyst 1, showing at best trace amounts of amide product.

View Article and Find Full Text PDF

Electronic structure calculations using density functional theory were performed on potential intermediates in the reaction of Fe(dmpe)(2)N(2) (dmpe = 1,2-bis(dimethylphosphino)ethane) with protons. Three mechanisms were investigated and compared, and the possibility of a two-electron reduction by a sacrificial Fe(dmpe)(2)N(2) complex was considered in each mechanism. A Chatt-like mechanism, involving the stepwise addition of protons to the terminal nitrogen, was found to be the least favorable.

View Article and Find Full Text PDF

Titan has long been known to harbour the richest atmospheric chemistry in the Solar System. Until recently, it had been believed that complex hydrocarbons and nitriles were produced through neutral chemistry that would eventually lead to the formation of micrometre sized organic aerosols. However, recent measurements by the Cassini spacecraft are drastically changing our understanding of Titan's chemistry.

View Article and Find Full Text PDF

A series of 12 thieno-fused macrocycles based on the dehydro[14]annulene framework have been prepared. Studies have focused on the optical and electronic properties of the dehydrobenzothieno[14]annulenes (DBTAs) and dehydrothieno[14]annulenes (DTAs) utilizing NMR spectroscopy, UV-vis spectrophotometry, electrochemistry, and DFT computations. X-ray crystal structures were also obtained for two of the macrocycles.

View Article and Find Full Text PDF

The Cassini spacecraft passed within 168.2 kilometers of the surface above the southern hemisphere at 19:55:22 universal time coordinated on 14 July 2005 during its closest approach to Enceladus. Before and after this time, a substantial atmospheric plume and coma were observed, detectable in the Ion and Neutral Mass Spectrometer (INMS) data set out to a distance of over 4000 kilometers from Enceladus.

View Article and Find Full Text PDF

The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

View Article and Find Full Text PDF

Ions were detected in the vicinity of Saturn's A ring by the Ion and Neutral Mass Spectrometer (INMS) instrument onboard the Cassini Orbiter during the spacecraft's passage over the rings. The INMS saw signatures of molecular and atomic oxygen ions and of protons, thus demonstrating the existence of an ionosphere associated with the A ring. A likely explanation for these ions is photoionization by solar ultraviolet radiation of neutral O2 molecules associated with a tenuous ring atmosphere.

View Article and Find Full Text PDF