In this study, parametric and semi-parametric regression models are examined for random right censorship. The components of the aforementioned regression models are estimated with weights based on Cox and Kaplan-Meier estimates, which are semi-parametric and nonparametric methods used in survival analysis, respectively. The Tobit based on weights obtained from a Cox regression is handled as a parametric model instead of other parametric models requiring distribution assumptions such as exponential, Weibull, and gamma distributions.
View Article and Find Full Text PDFIt is well-known that classical Tobit estimator of the parameters of the censored regression (CR) model is inefficient in case of non-normal error terms. In this paper, we propose to use the modified maximum likelihood (MML) estimator under the Jones and Faddy's skew -error distribution, which covers a wide range of skew and symmetric distributions, for the CR model. The MML estimators, providing an alternative to the Tobit estimator, are explicitly expressed and they are asymptotically equivalent to the maximum likelihood estimator.
View Article and Find Full Text PDF