Publications by authors named "Yelenna Skomorovska-Prokvolit"

New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. In this manuscript we characterize 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv-exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target.

View Article and Find Full Text PDF

New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. We isolated 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone agonists (GnRHa) are used as an alternative to human chorionic gonadotropin (hCG) to trigger ovulation and decrease the risk of ovarian hyperstimulation syndrome. GnRHa is less potent at inducing ovarian vascular endothelial growth factor (VEGF), but may also affect endometrial angiogenesis and early placental development. In this study, we explore the effect of superovulation on endometrial angiogenesis during critical periods of gestation in a mouse model.

View Article and Find Full Text PDF

Objective: Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor whose phosphorylation increases energy production. We sought to evaluate the placenta-specific effect of AMPK activation on the handling of nutrients required for fetal development.

Methods: Explants were isolated from term placenta of 29 women (pregravid body mass index: 29.

View Article and Find Full Text PDF

Uterine quiescence during pregnancy is maintained by progesterone primarily via signaling mediated by the type-B progesterone receptor (PR-B) in myometrial cells. Withdrawal of PR-B-mediated progesterone activity is a principal trigger for labor. One mechanism for PR-B withdrawal is by inhibition of its activity by the type-A PR (PR-A) isoform in myometrial cells.

View Article and Find Full Text PDF

The steroid hormone progesterone acting via the nuclear progesterone receptor (PR) isoforms, progesterone receptor A (PR-A) and progesterone receptor B (PR-B), is essential for the maintenance of uterine quiescence during pregnancy. Inhibition of PR signaling augments uterine contractility and induces labor. Human parturition is thought to be triggered by modulation of PR signaling in myometrial cells to induce a functional progesterone withdrawal.

View Article and Find Full Text PDF

The hypothesis that phosphorylation of progesterone receptor (PR) isoforms, PR-A and PR-B, in myometrial cells affects progesterone action in the context of human parturition was tested. Immunodetection of phosphoserine (pSer) PR forms in term myometrium revealed that the onset of labor is associated with increased phosphorylation of PR-A at serine-345 (pSer345-PRA) and that pSer345-PRA localized to the nucleus of myometrial cells. In explant cultures of term myometrium generation of pSer345-PRA was induced by interleukin-1β and dependent on progesterone, suggesting that pSer345-PRA generation is induced by a proinflammatory stimulus.

View Article and Find Full Text PDF

We reported at the Keynote Forum of Immunology Summit-2015 that recombinant human (rh) TNF-α or rhIL-6 stimulated production of matrix metalloproteinase-9 (MMP-9) in the T/C28a2 and C-28/I2 human immortalized chondrocyte cell lines. Furthermore, we reported that tocilizumab (TCZ), a fully humanized monoclonal antibody which neutralizes IL-6-mediated signaling, inhibited the rhIL-6-mediated increase in the production of MMP-9. IL-6 is also a known activator of the JAK/STAT signaling pathway.

View Article and Find Full Text PDF

Background: Activation of the SAPK/MAPK signaling pathway by pro-inflammatory cytokines is known to induce apoptosis in cultured articular chondrocytes. C-28/I2, an immortalized human juvenile chondrocyte cell line was employed to determine the extent to which recombinant human (rh) forms of the pro-inflammatory cytokines, tumor necrosis factor-α (rhTNF-α,), interleukin-6 (rhIL-6) and oncostatin M (rhOSM) induced apoptosis.

Methods: The induction of apoptosis in the presence or absence of these cytokines was measured by the DAPI/TUNEL assay, by whether or not pro-caspase-3 was activated and by the extent to which poly-ADP-ribose polymerase (PARP) was degraded.

View Article and Find Full Text PDF

Introduction: The development of effective treatments for osteoarthritis (OA) has been hampered by a poor understanding of OA at the cellular and molecular levels. Emerging as a disease of the 'whole joint', the importance of the biochemical contribution of various tissues, including synovium, bone and articular cartilage, has become increasingly significant. Bathing the entire joint structure, the proteomic analysis of synovial fluid (SF) from osteoarthritic shoulders offers a valuable 'snapshot' of the biologic environment throughout disease progression.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV; Human herpesvirus 5) and the other betaherpesviruses encode a number of distinct gene families, including the US12 family, which is represented only in the cytomegaloviruses of higher primates, and is comprised of a set of 10 contiguous genes (US12 through US21), each encoding a seven-transmembrane (7TM) protein. Nonessential for replication in cell culture but well-conserved among clinical isolates, little is known of possible US12 family member functions, other than a previously identified amino acid sequence similarity between US21 and a group of 7TM proteins that include known inhibitors of apoptosis, and a very limited description of similarity between US12 family members and G-protein-coupled receptors (GPCR). As a prelude to biochemical analysis, we have conducted a detailed analysis of the relationships among US12 family members and between these proteins and other proteins, particularly GPCR and other 7TM molecules.

View Article and Find Full Text PDF

The human cytomegalovirus (HCMV) US12 gene family is a group of predicted seven-transmembrane, G-protein-coupled receptor-related proteins, about which little is known. Specific rabbit polyclonal antibodies detected US17 and US18 beginning 54 and 36 h after infection, respectively, with expression of both proteins dependent on viral DNA synthesis. While US14 and US18 are expressed exclusively in the cytoplasm, we unexpectedly found abundant expression of US17 in both the cytoplasm and nucleoplasm.

View Article and Find Full Text PDF