We have developed an electrospray mass spectrometry method which is capable to determine antibody affinity in a gas phase experiment. A solution with the immune complex is electrosprayed and multiply charged ions are translated into the gas phase. Then, the intact immune-complex ions are separated from unbound peptide ions.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
December 2017
Proteins are essential for almost all physiological processes of life. They serve a myriad of functions which are as varied as their unique amino acid sequences and their corresponding three-dimensional structures. To fulfill their tasks, most proteins depend on stable physical associations, in the form of protein complexes that evolved between themselves and other proteins.
View Article and Find Full Text PDFWe have developed a method to determine apparent activation energies of dissociation for ionized protein-protein complexes in the gas phase using electrospray ionization mass spectrometry following the Rice-Ramsperger-Kassel-Marcus quasi-equilibrium theory. Protein-protein complexes were formed in solution, transferred into the gas phase, and separated from excess free protein by ion mobility filtering. Afterwards, complex disassembly was initiated by collision-induced dissociation with step-wise increasing energies.
View Article and Find Full Text PDFIntact transition epitope mapping (ITEM) enables rapid and accurate determination of protein antigen-derived epitopes by either epitope extraction or epitope excision. Upon formation of the antigen peptide-containing immune complex in solution, the entire mixture is electrosprayed to translate all constituents as protonated ions into the gas phase. There, ions from antibody-peptide complexes are separated from unbound peptide ions according to their masses, charges, and shapes either by ion mobility drift or by quadrupole ion filtering.
View Article and Find Full Text PDFMass spectrometric epitope mapping has become a versatile method to precisely determine a soluble antigen's partial structure that directly interacts with an antibody in solution. Typical lengths of investigated antigens have increased up to several 100 amino acids while experimentally determined epitope peptides have decreased in length to on average 10-15 amino acids. Since the early 1990s more and more sophisticated methods have been developed and have forwarded a bouquet of suitable approaches for epitope mapping with immobilized, temporarily immobilized, and free-floating antibodies.
View Article and Find Full Text PDFTo obtain insight into pH change-driven molecular dynamics, we studied the higher order structure changes of protein G'e at the molecular and amino acid residue levels in solution by using nanoESI- and IM-mass spectrometry, CD spectroscopy, and protein chemical modification reactions (protein footprinting). We found a dramatic change of the overall tertiary structure of protein G'e when the pH was changed from neutral to acidic, whereas its secondary structure features remained nearly invariable. Limited proteolysis and surface-topology mapping of protein G'e by fast photochemical oxidation of proteins (FPOP) under neutral and acidic conditions reveal areas where higher order conformational changes occur on the amino-acid residue level.
View Article and Find Full Text PDFMass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.
View Article and Find Full Text PDFThe development and application of a miniaturized affinity system for the preparation and release of intact immune complexes are demonstrated. Antibodies were reversibly affinity-adsorbed on pipette tips containing protein G´ and protein A, respectively. Antigen proteins were digested with proteases and peptide mixtures were exposed to attached antibodies; forming antibody-epitope complexes, that is, immune complexes.
View Article and Find Full Text PDF