Maintaining high levels of biological diversity in various ecosystems is necessary for stable functioning of the Earth's biosphere. The article describes diversity and ecology of heterotrophic siliceous protists - rotosphaerids, colourless free-living thaumatomonad flagellates, and centrohelid heliozoans - in Arctic waters located of Asian Russia. Samples were collected in the mouths of the Olenyok, Yana, Indigirka, Kolyma Rivers - and small freshwater ponds near Settlement of Tiksi in Yakutia.
View Article and Find Full Text PDFMetabarcoding using high throughput sequencing of amplicons of the 18S rRNA gene is one of the widely used methods for assessing the diversity of microeukaryotes in various ecosystems. We investigated the effectiveness of the V4 and V8-V9 regions of the 18S rRNA gene by comparing the results of metabarcoding microeukaryotic communities using the DADA2 (ASV), USEARCH-UNOISE3 (ZOTU), and USEARCH-UPARSE (OTU with 97% similarity) algorithms. Both regions showed similar levels of genetic variability and taxa identification accuracy.
View Article and Find Full Text PDFMicrotubules are formed by α- and β-tubulin heterodimers nucleated with γ-tubulin. Tubulins are conserved eukaryotic proteins. Previously, it was shown that microtubules are involved in diatom silica frustule morphogenesis.
View Article and Find Full Text PDFThe toxic influence of soot microparticles on terrestrial organisms has been well studied, although there is scarce data on how microparticles could affect hydrobionts. We performed a first-ever study of the short-term (5 days) impact of furnace soot (0.005 g/L) on the structural and functional features of gill cells in the Baikal Sculpin species Paracottus knerii, Dybowski, 1874.
View Article and Find Full Text PDFHeterotrophic protists Rotosphaerida, Thaumatomonadida, and centrohelid heliozoans are among the less studied silicified protists in terms of their biogeography and ecology. These organisms inhabit fresh and brackish water, and leave behind siliceous structural elements after death that are species-specific and amenable to electron microscopic analysis. This paper is the first to present data on species richness and taxonomic structure of silica-scaled heterotrophic protists-rotosphaerids, colorless free-living thaumatomonad flagellates and centrohelid heliozoans-in the large continuous water system of Siberia connecting Lake Baikal to the Kara Sea.
View Article and Find Full Text PDFMicroorganisms exhibit seasonal succession governed by physicochemical factors and interspecies interactions, yet drivers of this process in different environments remain to be determined. We used high-throughput sequencing of 16S rRNA and 18S rRNA genes to study seasonal dynamics of bacterial and microeukaryotic communities at pelagic site of Lake Baikal from spring (under-ice, mixing) to autumn (direct stratification). The microbial community was subdivided into distinctive coherent clusters of operational taxonomic units (OTUs).
View Article and Find Full Text PDFThe end-binding proteins are a family of microtubule-associated proteins; this family belongs to plus-end-tracking proteins (+TIPs) that regulate microtubule growth and stabilisation. Although the genes encoding EB proteins are found in all eukaryotic genomes, most studies of them have centred on one or another taxonomic group, without a broad comparative analysis. Here, we present a first phylogenetic analysis and a comparative analysis of domain structures of diatom EB proteins in comparison with other phyla of Chromista, red and green algae, as well as model organisms A.
View Article and Find Full Text PDFDiatoms are a group of eukaryotic microalgae populating almost all aquatic and wet environments. Their abundance and species diversity make these organisms significant contributors to biogeochemical cycles and important components of aquatic ecosystems. Although significant progress has been made in studies of Diatoms (Bacillariophyta) over the last two decades, since the spread of "omics" technologies, our current knowledge of the molecular processes and gene regulatory networks that facilitate environmental adaptation remain incomplete.
View Article and Find Full Text PDFPhytoplankton and bacterioplankton play a key role in carbon cycling of aquatic ecosystems. In this study, we found that co-occurrence patterns between different types of phytoplankton, bacterioplankton, and environmental parameters in Lake Baikal during spring were different over the course of three consecutive years. The composition of phytoplankton and bacterial communities was investigated using microscopy and 16S rRNA gene pyrosequencing, respectively.
View Article and Find Full Text PDFThe original version of this article unfortunately contained mistakes in the legends of figures.
View Article and Find Full Text PDFThe pelagic zone of Lake Baikal is an ecological niche where phytoplankton bloom causes increasing microbial abundance in spring which plays a key role in carbon turnover in the freshwater lake. Co-occurrence patterns revealed among different microbes can be applied to predict interactions between the microbes and environmental conditions in the ecosystem. We used 454 pyrosequencing of 16S rRNA and 18S rRNA genes to study bacterial and microbial eukaryotic communities and their co-occurrence patterns at the pelagic zone of Lake Baikal during a spring phytoplankton bloom.
View Article and Find Full Text PDFDiatoms stand out among other microalgae due to the high diversity of species-specific silica frustules whose components (valves and girdle bands) are formed within the cell in special organelles called silica deposition vesicles (SDVs). Research on cell structure and morphogenesis of frustule elements in diatoms of different taxonomic groups has been carried out since the 1950s but is still relevant today. Here, cytological features and valve morphogenesis in the freshwater raphid pennate diatom Encyonema ventricosum (Agardh) Grunow have been studied using light and transmission electron microscopy of cleaned frustules and ultrathin sections of cells, and scanning electron and atomic force microscopy of the frustule surface.
View Article and Find Full Text PDFThe composition of bacterial communities in Lake Baikal in different hydrological periods and at different depths (down to 1515 m) has been analyzed using pyrosequencing of the 16S rRNA gene V3 variable region. Most of the resulting 34 562 reads of the Bacteria domain have clustered into 1693 operational taxonomic units (OTUs) classified with the phyla Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Firmicutes, Acidobacteria and Cyanobacteria. It has been found that their composition at the family level and relative contributions to bacterial communities distributed over the water column vary depending on hydrological period.
View Article and Find Full Text PDFChitin synthases are widespread among eukaryotes and known to have a complex evolutionary history in some of the groups. We have reconstructed the chitin synthase phylogeny using the most taxonomically comprehensive dataset currently available and have shown the presence of independently formed paralogous groups in oomycetes, ciliates, fungi, and all diatoms except raphid pennates. There were also two cases of horizontal gene transfer (HGT): transfer from fungus to early diatoms gave rise to diatom paralogous group, while transfer from raphid pennate diatom to Acantamoeba ancestor is, to our knowledge, restricted to a single gene in amoeba.
View Article and Find Full Text PDFThe sub-ice environment of Lake Baikal represents a special ecotope where strongly increasing microbial biomass causes an "ice-bloom" contributing therefore to the ecosystem functioning and global element turnover under low temperature in the world's largest freshwater lake. In this work, we analyzed bacterial and microalgal communities and their succession in the sub-ice environment in March-April 2010-2012. It was found out that two dinoflagellate species (Gymnodinium baicalense var.
View Article and Find Full Text PDFThe important role of the cytoskeleton in the morphogenesis of siliceous frustule components, which are synthesized within the diatom cells, has been revealed due to experiments with microtubule inhibitors. It has been shown that colchicine entering the diatom cell inhibits polymerization of tubulin, the main protein of microtubules, thereby disrupting the normal processes of biogenic silica deposition and daughter valve morphogenesis. In this study, experiments with a synchronized culture of the pennate diatom Synedra acus have been performed to determine the timing and duration of the formation of various valve components and analyze the effect of colchicine at a subtoxic concentration on the structure of daughter valves at different stages of their morphogenesis.
View Article and Find Full Text PDFBackground: Proteins of the major intrinsic protein (MIP) family, or aquaporins, have been detected in almost all organisms. These proteins are important in cells and organisms because they allow for passive transmembrane transport of water and other small, uncharged polar molecules.
Results: We compared the predicted amino acid sequences of 20 MIPs from several algae species of the phylum Heterokontophyta (Kingdom Chromista) with the sequences of MIPs from other organisms.
Existing algorithms allow us to infer phylogenetic networks from sequences (DNA, protein or binary), sets of trees, and distance matrices, but there are no methods to build them using the gene order data as an input. Here we describe several methods to build split networks from the gene order data, perform simulation studies, and use our methods for analyzing and interpreting different real gene order datasets. All proposed methods are based on intermediate data, which can be generated from genome structures under study and used as an input for network construction algorithms.
View Article and Find Full Text PDFInsight into the role of bacteria in degradation of diatoms is important for understanding the factors and components of silica turnover in aquatic ecosystems. Using microscopic methods, it has been shown that the degree of diatom preservation and the numbers of diatom-associated bacteria in the surface layer of bottom sediments decrease with depth; in the near-bottom water layer, the majority of bacteria are associated with diatom cells, being located either on the cell surface or within the cell. The structure of microbial community in the near-bottom water layer has been characterized by pyrosequencing of the 16S rRNA gene, which has revealed 149 208 unique sequences.
View Article and Find Full Text PDFBackground: In crustaceans, several mechanisms provide for the mechanical strength of the cuticular "tools" (dactyli, claws, jaws), which serve to catch and crush food objects. Studies on the mandibles of the endemic Baikal amphipod Acanthogammarus grewingkii by means of electron microscopy and elemental analysis have revealed specific structural features of these mouthparts.
Methodology: The fine structure of the mandible has been studied by means of SEM, TEM, and AFM; methods used to analyze its elemental and phase composition include XEPMA, XPS, SEM-EDS analysis, and XRD.
The first two mitochondrial genomes of marine diatoms were previously reported for the centric Thalassiosira pseudonana and the raphid pennate Phaeodactylum tricornutum. As part of a genomic project, we sequenced the complete mitochondrial genome of the freshwater araphid pennate diatom Synedra acus. This 46,657 bp mtDNA encodes 2 rRNAs, 24 tRNAs, and 33 proteins.
View Article and Find Full Text PDFMany pigmented heterokonts are able to synthesize elements of their cell walls (the frustules) of dense biogenic silica. These include diatom algae, which occupy a significant place in the biosphere. The siliceous frustules of diatoms have species-specific patterns of surface structures between 10 and a few hundred nanometers.
View Article and Find Full Text PDF