Fungi are considered serious pathogens to many plants and can cause severe economic damage. Early detection of these pathogens is very important and might be critical for their control. The available methods for detection of fungi are time consuming and not always very specific.
View Article and Find Full Text PDFFourier transform infrared (FTIR) spectroscopy has been used by chemists as a powerful tool to characterize inorganic and organic compounds. In this study, we examine the potential of FTIR microspectroscopy for early evaluation of therapy efficiency. For this purpose, we examine the effect of acyclovir (a known antiherpetic drug) on the development of herpes simplex virus type 1 (HSV-1) infection in cell culture.
View Article and Find Full Text PDFFourier-transform infrared (FTIR) microscopy is considered to be a comprehensive and sensitive method for detection of molecular changes in cells. The advantage of FTIR microspectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of the examined sample. In the present study, we examined the potential of FTIR microscopy as an easy, rapid and reliable technique for discrimination between bacteria and fungi both of which are involved in various human and other animal infections.
View Article and Find Full Text PDFFourier-transform infrared (FTIR) microscopy is considered a comprehensive and sensitive method for detection of molecular changes in cells. The advantage of FTIR microspectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of a cell culture or a tissue. We have shown that it is possible to apply FTIR microscopy as a sensitive and effective assay for the detection of cells infected with various members of the herpes family of viruses and retroviruses.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2004
The kinetics of Herpes simplex infection development was studied using an FTIR microscopy (FTIR-M) method. The family of herpes viruses includes several members like H. simplex types I and II (HSV I, II), Varicella zoster (VZV) viruses which are involved in various human and animal infections of different parts of the body.
View Article and Find Full Text PDFThe sulfated polysaccharide obtained from a species of red microalga has proved to be a potent antiviral agent against various members of the herpes family. In the present study, we used microscopic Fourier transform infrared spectroscopy (FT-IR) to investigate differences between normal cells, those infected with herpes viruses, and infected cells treated with red microalgal polysaccharide. FT-IR enables the characterization of cell or tissue pathology based on characteristic molecular vibrational spectra of the cells.
View Article and Find Full Text PDFFourier transform infrared (FTIR) spectroscopy is currently being developed as a new optical approach to the diagnosis and characterization of cell or tissue pathology. The advantage of FTIR microspectroscopy over conventional FTIR spectroscopy in the diagnosis of malignancies is that it facilitates inspection of restricted regions of the cell culture or tissue. In this study, we set out to evaluate FTIR microspectroscopy as a diagnostic tool for identifying retrovirus-induced malignancies.
View Article and Find Full Text PDFRed microalgal polysaccharides significantly inhibited the production of retroviruses (murine leukemia virus- MuLV) and cell transformation by murine sarcoma virus(MuSV-124) in cell culture. The most effective inhibitory effect of these polysaccharides against both cell transformation and virus production was obtained when the polysaccharide was added 2 h before or at the time of infection. Although, addition of the polysaccharide post-infection significantly reduced the number of transformed cells, but its effect was less marked than that obtained when the polysaccharide was added before or at the time of infection.
View Article and Find Full Text PDF