Publications by authors named "Yelena Kovtun"

Antibody-drug conjugates have elicited great interest recently as targeted chemotherapies for cancer. Recent preclinical and clinical data have continued to raise questions about optimizing the design of these complex therapeutics. Biochemical methods for site-specific antibody conjugation have been a design feature of recent clinical ADCs, and preclinical reports suggest that site-specifically conjugated ADCs generically offer improved therapeutic indices (i.

View Article and Find Full Text PDF

A new type of antibody-drug conjugate (ADC) has been prepared that contains a sulfur-bearing maytansinoid attached to an antibody via a highly stable tripeptide linker. Once internalized by cells, proteases in catabolic vesicles cleave the peptide of the ADC's linker causing self-immolation that releases a thiol-bearing metabolite, which is then -methylated. Conjugates were prepared with peptide linkers containing only alanyl residues, which were all l isomers or had a single d residue in one of the three positions.

View Article and Find Full Text PDF

The potential of CD123-targeted therapies in acute lymphoblastic leukemia/lymphoma remains largely unexplored. We examined CD123 expression levels in a large cohort of patients with acute lymphoblastic leukemia/lymphoma and assessed the impact of IMGN632, a conjugate of CD123-binding antibody with a novel DNA-alkylating payload. CD123 expression on leukemic blasts was surveyed using multicolor/multiparameter flow cytometry.

View Article and Find Full Text PDF

The outlook for patients with refractory/relapsed acute myeloid leukemia (AML) remains poor, with conventional chemotherapeutic treatments often associated with unacceptable toxicities, including severe infections due to profound myelosuppression. Thus there exists an urgent need for more effective agents to treat AML that confer high therapeutic indices and favorable tolerability profiles. Because of its high expression on leukemic blast and stem cells compared with normal hematopoietic stem cells and progenitors, CD123 has emerged as a rational candidate for molecularly targeted therapeutic approaches in this disease.

View Article and Find Full Text PDF

The myeloid differentiation antigen CD33 has long been exploited as a target for antibody-based therapeutic approaches in acute myeloid leukemia (AML). Validation of this strategy was provided with the approval of the CD33-targeting antibody-drug conjugate (ADC) gemtuzumab ozogamicin in 2000; the clinical utility of this agent, however, has been hampered by safety concerns. Thus, the full potential of CD33-directed therapy in AML remains to be realized, and considerable interest exists in the design and development of more effective ADCs that confer high therapeutic indices and favorable tolerability profiles.

View Article and Find Full Text PDF

Tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADCs) is now a clinically validated approach for cancer treatment. In an attempt to improve the clinical success rate of ADCs, emphasis has been recently placed on the use of DNA-cross-linking pyrrolobenzodiazepine compounds as the payload. Despite promising early clinical results with this class of ADCs, doses achievable have been low due to systemic toxicity.

View Article and Find Full Text PDF

The promise of tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADC) has now been realized, evidenced by the approval of two ADCs, both of which incorporate highly cytotoxic tubulin-interacting agents, for cancer therapy. An ongoing challenge remains in identifying potent agents with alternative mechanisms of cell killing that can provide ADCs with high therapeutic indices and favorable tolerability. Here, we describe the development of a new class of potent DNA alkylating agents that meets these objectives.

View Article and Find Full Text PDF

A triglycyl peptide linker (CX) was designed for use in antibody -: drug conjugates (ADC), aiming to provide efficient release and lysosomal efflux of cytotoxic catabolites within targeted cancer cells. ADCs comprising anti-epithelial cell adhesion molecule (anti-EpCAM) and anti-EGFR antibodies with maytansinoid payloads were prepared using CX or a noncleavable SMCC linker (CX and SMCC ADCs). The in vitro cytotoxic activities of CX and SMCC ADCs were similar for several cancer cell lines; however, the CX ADC was more active (5-100-fold lower IC50) than the SMCC ADC in other cell lines, including a multidrug-resistant line.

View Article and Find Full Text PDF

Antibody anilino maytansinoid conjugates (AaMCs) have been prepared in which a maytansinoid bearing an aniline group was linked through the aniline amine to a dipeptide, which in turn was covalently attached to a desired monoclonal antibody. Several such conjugates were prepared utilizing different dipeptides in the linkage including Gly-Gly, l-Val-l-Cit, and all four stereoisomers of the Ala-Ala dipeptide. The properties of AaMCs could be altered by the choice of dipeptide in the linker.

View Article and Find Full Text PDF

Coltuximab ravtansine (SAR3419) is an antibody-drug conjugate (ADC) targeting CD19 created by conjugating a derivative of the potent microtubule-acting cytotoxic agent, maytansine, to a version of the anti-CD19 antibody, anti-B4, that was humanized as an IgG1 by variable domain resurfacing. Four different linker-maytansinoid constructs were synthesized (average ∼3.5 maytansinoids/antibody for each) to evaluate the impact of linker-payload design on the activity of the maytansinoid-ADCs targeting CD19.

View Article and Find Full Text PDF

Several antibody-maytansinoid conjugates (AMCs) are in clinical trials for the treatment of various cancers. Each of these conjugates can be metabolized by tumor cells to give cytotoxic maytansinoid metabolites that can kill targeted cells. In preclinical studies in mice, the cytotoxic metabolites initially formed in vivo are further processed in the mouse liver to give several oxidized metabolic species.

View Article and Find Full Text PDF

The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules.

View Article and Find Full Text PDF

The synthesis and biological evaluation of hydrophilic heterobifunctional cross-linkers for conjugation of antibodies with highly cytotoxic agents are described. These linkers contain either a negatively charged sulfonate group or a hydrophilic, noncharged PEG group in addition to an amine-reactive N-hydroxysuccinimide (NHS) ester and sulfhydryl reactive termini. These hydrophilic linkers enable conjugation of hydrophobic organic molecule drugs, such as a maytansinoid, at a higher drug/antibody ratio (DAR) than hydrophobic SPDB and SMCC linkers used earlier without triggering aggregation or loss of affinity of the resulting conjugate.

View Article and Find Full Text PDF

In this report, we describe the synthesis of a panel of disulfide-linked huC242 (anti-CanAg) antibody maytansinoid conjugates (AMCs), which have varying levels of steric hindrance around the disulfide bond, in order to investigate the relationship between stability to reduction of the disulfide linker and antitumor activity of the conjugate in vivo. The conjugates were first tested for stability to reduction by dithiothreitol in vitro and for plasma stability in CD1 mice. It was found that the conjugates having the more sterically hindered disulfide linkages were more stable to reductive cleavage of the maytansinoid in both settings.

View Article and Find Full Text PDF

One approach to improving activity of anticancer drugs is to conjugate them to antibodies that recognize tumor-associated, cell-surface antigens. The antibody-drug conjugate concept evolved following major advances, first, in the development of humanized and fully human antibodies; second, in the discoveries of highly cytotoxic compounds ('drugs) linkable to antibodies; and finally, in the optimization of linkers that couple the drug to the antibody and provide sufficient stability of the antibody-drug conjugate in the circulation, optimal activation of the drug in the tumor, and the ability of the activated drug to overcome multidrug resistance. In this article, we will review the considerations for selecting a target antigen, the design of the conjugate, and the pre-clinical and clinical experiences with the current generation of antibody-drug conjugates.

View Article and Find Full Text PDF

Maytansine and its analogues (maytansinoids) are potent microtubule-targeted compounds that inhibit proliferation of cells at mitosis. Antibody-maytansinoid conjugates consisting of maytansinoids (DM1 and DM4) attached to tumor-specific antibodies have shown promising clinical results. To determine the mechanism by which the antibody-DM1 conjugates inhibit cell proliferation, we examined the effects of the cleavable anti-EpCAM-SPP-DM1 and uncleavable anti-EpCAM-SMCC-DM1 conjugates on MCF7 human breast tumor cells.

View Article and Find Full Text PDF

Conjugation of cytotoxic compounds to antibodies that bind to cancer-specific antigens makes these drugs selective in killing cancer cells. However, many of the compounds used in such antibody-drug conjugates (ADC) are substrates for the multidrug transporter MDR1. To evade the MDR1-mediated resistance, we conjugated the highly cytotoxic maytansinoid DM1 to antibodies via the maleimidyl-based hydrophilic linker PEG(4)Mal.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are designed to specifically bind to and kill cells expressing their target antigens. In addition to the obvious requirement of the presence of the target antigen on the cell surface, several other factors contribute to the sensitivity of target cells to the action of ADCs. These include (i) the rate of internalization of the ADC, (ii) its proteolytic degradation in late endosomes and lysosomes and the subsequent release of cytotoxic drug, and (iii) the intracellular concentration of the released drug.

View Article and Find Full Text PDF

Maytansine, a highly cytotoxic natural product, failed as an anticancer agent in human clinical trials because of unacceptable systemic toxicity. The potent cell killing ability of maytansine can be used in a targeted delivery approach for the selective destruction of cancer cells. A series of new maytansinoids, bearing a disulfide or thiol substituent were synthesized.

View Article and Find Full Text PDF

Antibody-drug conjugates are targeted anticancer agents consisting of a cytotoxic drug covalently linked to a monoclonal antibody for tumor antigen-specific activity. Once bound to the target cell-surface antigen, the conjugate must be processed to release an active form of the drug, which can reach its intracellular target. Here, we used both biological and biochemical methods to better define this process for antibody-maytansinoid conjugates.

View Article and Find Full Text PDF

Conjugates of the anti-CanAg humanized monoclonal antibody huC242 with the microtubule-formation inhibitor DM1 (a maytansinoid), or with the DNA alkylator DC1 (a CC1065 analogue), have been evaluated for their ability to eradicate mixed cell populations formed from CanAg-positive and CanAg-negative cells in culture and in xenograft tumors in mice. We found that in culture, conjugates of either drug killed not only the target antigen-positive cells but also the neighboring antigen-negative cells. Furthermore, we showed that, in vivo, these conjugates were effective in eradicating tumors containing both antigen-positive and antigen-negative cells.

View Article and Find Full Text PDF