Publications by authors named "Yejun Qiu"

The enhancement of catalytic activity can be achieved by removing non-active components from the surface of catalyst materials, thereby increasing the accessibility of active sites. In this study, an electrically driven method is described for the removal of non-active phosphorus (P) to optimize the surface composition of iron-nickel phosphide (denoted as P-O-NFF), resulting in the exposure of more active Fe-Ni sites for oxygen evolution reaction (OER). The optimized P-O-NFF electrode exhibits exceptional OER catalytic activity, with an overpotential of 217 mV at 10 mA cm.

View Article and Find Full Text PDF

The stability of electrocatalysts during the hydrogen evolution reaction (HER) is vital for efficient production of hydrogen energy. Herein, we demonstrate that silver nanowire aerogel-based support (AABS) could facilitate the construction of HER catalysts with extraordinary long-term stability. A full nanostructure catalyst of nickel phosphide based formed on AABS (NiP-NiP@AABS) was prepared to achieve an overpotential of 687 mV (without compensation) for HER at the current density of 1 A cm in 0.

View Article and Find Full Text PDF

The recycling of spent lithium-ion batteries (LIBs) has received increasing attention for environment and resource reclamation. Converting LIBs wastes into high-efficiency catalysts is a win-win strategy for realizing resource reclamation and addressing sustainable energy challenges. Herein, we developed a simple method to upcycle spent-LIBs cathode powder into Co-doped NiFe carbonate hydroxide hydrate (Co/NFCH-FF) as a low-cost and efficient oxygen evolution reaction (OER) electrocatalyst.

View Article and Find Full Text PDF

Correction for 'Synthesis of lead-free CsSbBr perovskite alternative nanocrystals with enhanced photocatalytic CO reduction activity' by Chang Lu , , 2020, , 2987-2991, https://doi.org/10.1039/C9NR07722G.

View Article and Find Full Text PDF

The development of low-Pt catalysts with high activity and durability is critical for fuel cells. Here, Pt-skin wrapped sub-5 nm PtCo intermetallic nanoparticles are successfully mounted on single atom Co-N-C support by exploiting the barrier effect of Co-anchor. According to a collaborative experimental and computational investigation, the increased oxygen reduction reaction activity of PtCo/Co-N-C arises from the direct electron transfer from PtCo to Co-N-C, and the resulting optimal d-band center of Pt.

View Article and Find Full Text PDF

Development of a composite electrolyte with high ionic conductivity, excellent electrochemical stability and preeminent mechanical strength is beneficial for suppressing Li-dendrite penetration and unstable interfacial reactions in solid-state Li-metal batteries. Herein, a novel composite electrolyte material comprising perovskite LiLaTiO (LLTO), poly(ethylene oxide) (PEO), and a barium titanate (BTO)-polyimide (PI) composite matrix has been successfully fabricated. Benefiting from the well-defined ion channels, the resulting BTO-PI@LLTO-PEO-FEC-LiTFSI (BP@LPFL) exhibits excellent cycling stability, low interfacial resistance, enhanced mechanical strength, and high ionic conductivity.

View Article and Find Full Text PDF

All solid-state lithium batteries (SSLBs) are poised to have higher energy density and better safety than current liquid-based Li-ion batteries, but a central requirement is effective ionic conduction pathways throughout the entire cell. Here we develop a catholyte based on an emerging class of porous materials, porous organic cages (POCs). A key feature of these Li conducting POCs is their solution-processibility.

View Article and Find Full Text PDF

Catalysts based on Cu nanocrystals (NCs) for electrochemical CO -to-C conversion with high activity have been a subject of considerable interest, but poor stability and low selectivity for a single C product remain obstacles for realizing sustainable carbon-neutral cycles. Here, we used the facet-selective atomic layer deposition (FS-ALD) technique to selectively cover the (111) surface of Cu NCs with ultrathin Al O to increase the exposed facet ratio of (100)/(111), resulting in a faradaic efficiency ratio of C H /CH for overcoated Cu NCs 22 times higher than that for pure Cu NCs. Peak performance of the overcoated catalyst (Cu NCs/Al O -10C) reaches a C H faradaic efficiency of 60.

View Article and Find Full Text PDF

Development of excellent and cheap electrocatalysts for water electrolysis is of great significance for application of hydrogen energy. Here, we show a highly efficient and stable oxygen evolution reaction (OER) catalyst with multilayer-stacked hybrid structure, in which vertical graphene nanosheets (VGSs), MoS nanosheets, and layered FeCoNi hydroxides (FeCoNi(OH)) are successively grown on carbon fibers (CF/VGSs/MoS/FeCoNi(OH)). The catalyst exhibits excellent OER performance with a low overpotential of 225 and 241 mV to attain 500 and 1000 mA cm and small Tafel slope of 29.

View Article and Find Full Text PDF

Recently, silver nanowire-based transparent conductive films (AgNW-based TCFs) with excellent comprehensive performance have aroused wide and great interest. However, it is always difficult to simultaneously improve the performances of TCFs in all aspects. In this work, by introducing silica nanoparticles (SiO-NPs) with a smaller particle size, several properties of AgNW-based TCFs were optimized successfully.

View Article and Find Full Text PDF

Despite progress in small scale electrocatalytic production of hydrogen peroxide (HO) using a rotating ring-disk electrode, further work is needed to develop a non-toxic, selective, and stable O-to-HO electrocatalyst for realizing continuous on-site production of neutral hydrogen peroxide. We report ultrasmall and monodisperse colloidal PtP nanocrystals that achieve HO production at near zero-overpotential with near unity HO selectivity at 0.27 V vs.

View Article and Find Full Text PDF

A synthetic method for uniform and pure Cs3Sb2Br9 NCs has been developed. Cs3Sb2Br9 NCs exhibit a 10-fold increase in activity for the photocatalytic CO2 reduction reaction compared to CsPbBr3 NCs, achieving 510 μmol CO g-1 cat. after 4 h.

View Article and Find Full Text PDF

Li metal is considered the most promising anode for high energy density secondary batteries due to its high theoretical capacity and low redox potential. However, lithium is prone to form dendrites which will not only cause internal short-circuits but also bring accumulation of "dead Li" and result in fast capacity decay, thus its large-scale application is challenging. In this work, we demonstrate that the commonly used metal corrosion inhibitor, benzotriazole (BTA), can be used to modify the Cu foil surface and guide homogeneous Li plating/stripping due to the lithiophilic nature of the N atom in the BTA molecule.

View Article and Find Full Text PDF

The synergetic effect of hydrophilic and hydrophobic carbon can be used to obtain tunable hydrogen evolution reaction (HER) at the interface. Herein, graphene oxide (GO-Hummers method) was coated on graphene foam (GF) synthesized via chemical vapor deposition to develop mixed-dimensional heterostructure for the observation of HER. The porosity of GF not only provides an optimized diffusion coefficient for better mass transport but also modified surface chemistry (GF/GO-hydrophobic/hydrophilic interface), which results in an onset potential 50 mV and overpotential of 450 mV to achieve the current density 10 mA/cm.

View Article and Find Full Text PDF

Production of syngas with tunable CO/H ratio from renewable resources is an ideal way to provide a carbon-neutral feedstock for liquid fuel production. Ag is a benchmark electrocatalysts for CO-to-CO conversion but high overpotential limits the efficiency. We synthesize AgP nanocrystals (NCs) with a greater than 3-fold reduction in overpotential for electrochemical CO-to-CO reduction compared to Ag and greatly enhanced stability.

View Article and Find Full Text PDF

Developing earth-abundant and efficient electrocatalysts for photoelectrochemical water splitting is critical to realizing a high-performance solar-to-hydrogen energy conversion process. Herein, phosphorus-rich colloidal cobalt diphosphide nanocrystals (CoP NCs) are synthesized via hot injection. The CoP NCs show a Pt-like hydrogen evolution reaction (HER) electrocatalytic activity in acidic solution with a small overpotential of 39 mV to achieve -10 mA cm and a very low Tafel slope of 32 mV dec .

View Article and Find Full Text PDF

Li metal has long been considered as the ultimate anodic material for high-energy-density batteries. Protection of Li metal in electrochemical cycling and in the manufacturing environment is critical for practical applications. Here, we present the passivation of the Li metal-carbon nanotube (CNT) composite with molecular self-assembly of a long-chain aliphatic phosphonic acid.

View Article and Find Full Text PDF

Colloidal semiconductor quantum dot (CQD)-based photocathodes for solar-driven hydrogen evolution have attracted significant attention because of their tunable size, nanostructured morphology, crystalline orientation, and band gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.

View Article and Find Full Text PDF

An effective process for homogeneous electrodeposition of nickel was developed to improve the performance of silver nanowire-based transparent heaters (AgNW-THs). After electroplating Ni, the silver nanowires are uniformly coated by a layer Ni with 20-40 nm thickness, which has a small effect on the device transmittance, but significantly enhances its conductivity. Most excitingly, the nickel shell leads to a great increase of the temperature toleration of the AgNW-THs.

View Article and Find Full Text PDF

Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this work, highly monodisperse CoP and Co P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co P NCs show higher OER performance owing to easier formation of plentiful Co P@COOH heterojunctions.

View Article and Find Full Text PDF

Flexible transparent conductive films (TCFs) have attracted tremendous interest thanks to the rapid development of portable/flexible/wearable electronics. TCFs on the basis of silver nanowires (AgNWs) with excellent performance are becoming an efficient alternative to replace the brittle transparent metal oxide. In this study, a promising method was developed by introducing SiO hollow nanospheres (SiO-HNSs) into the film to significantly improve the performance of AgNW-based TCFs.

View Article and Find Full Text PDF

Electrochemical performance and production cost are the main concerns for the practical application of supercapacitors. Here we report a simple and universally applicable method to prepare hybrid metal oxides by metal redox reaction utilizing the inherent reducibility of metals and oxidbility of for the first time. As an example, Ni(OH)2/MnO2 hybrid nanosheets (NMNSs) are grown for supercapacitor application by self-reaction of Ni foam substrates in KMnO4 solution at room temperature.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions6ecog3ulvh1l9q0thr2clf4bbn5ocsu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once