Publications by authors named "Yeju Seong"

Protein microarrays are miniaturized two-dimensional arrays, incorporating thousands of immobilized proteins, typically printed in minute amounts on functionalized solid substrates, which can be analyzed in a high-throughput fashion. Irreproducibility of the printing techniques adopted, resulting in inconsistently and nonuniformly deposited microscopic spots, nonuniform signal intensities from the printed microspots, and significantly high background noise are some of the critical issues that affect protein analysis using traditional protein microarrays. To overcome such issues, in this study, we introduced a novel gold grid pattern-based protein microarray.

View Article and Find Full Text PDF

Nuclear factor of activated T cells (NFAT)-c1 is known as a key regulator in osteoclast differentiation and immune response. This study is a follow-up to our previous study showing the antiresorptive activity of VIVIT, a peptide type NFATc1 inhibitor, using absorbable collagen sponge (ACS). This study aimed to investigate the effective concentration range of local VIVIT that suppresses early excessive osteoclast activation and inflammation induced by high-dose recombinant human bone morphogenetic protein (rhBMP)-2 and concomitantly enhances bone healing in a rat critical-sized calvaria defect model.

View Article and Find Full Text PDF

Midbrain dopaminergic (DA) neurons are involved in the regulation of voluntary movement and in emotion-related behaviors and are affected in Parkinson's disease (PD). The homeodomain transcription factor Pitx3, which is uniquely expressed in midbrain DA neurons, plays a critical role in the development, function and maintenance of midbrain DA neurons. Pitx3 deficiency results in selective deficits of midbrain DA neurons in the substantia nigra pars compacta (SNc), reminiscent of the specific DA neuronal loss observed in PD.

View Article and Find Full Text PDF

Aim: There is a specific frequency of extremely low-frequency electromagnetic field (ELF-EMF) that promotes neuronal differentiation. Although several mechanisms are known to regulate ELF-EMF-induced neuronal differentiation, a key factor that mediates neurogenic potentials by the ELF-EMF is largely unknown. Also, the potential use of ELF-EMF exposure in cell transplantation assays is yet to be determined, including their possible use in ELF-EMF based therapy of neurological diseases.

View Article and Find Full Text PDF