Osteoporosis is a major health problem in the elderly. Almost every bone can fracture due to the increased bone fragility in osteoporosis, posing a major challenge to public health. 12-Deoxyphorbol-13-hexadecanoate (DHD), one of the main bioactive components of L.
View Article and Find Full Text PDFNicotinamide -methyltransferase (NNMT) plays multiple roles in improving the aggressiveness of colorectal cancer (CRC) and enhancing resistance to 5-Fluorouracil (5-FU), making it an attractive therapeutic target. Curcumin (Cur) is a promising natural compound, exhibiting multiple antitumor effects and potentiating the effect of 5-FU. The aim of the present study is to explore the effect of Cur on attenuating NNMT-induced resistance to 5-FU in CRC.
View Article and Find Full Text PDFChemoresistance is the main cause of poor prognosis in colorectal cancer (CRC). Nicotinamide N‑methyltransferase (NNMT) is a metabolic enzyme that is upregulated in various tumor types. It has been reported that NNMT inhibits apoptosis and enhances resistance to 5‑fluorouracil (5‑Fu) via inhibition of the apoptosis signal regulating kinase 1 (ASK1)‑p38 MAPK pathway in CRC cells.
View Article and Find Full Text PDFWhile amphiphilic block copolymers have demonstrated their utility for a range of practical applications, the behavior of cyclic block copolymers remains largely unexplored due to limited synthetic access. To investigate their micelle formation, biocompatible cyclic amphiphilic poly(ethylene glycol)-polycaprolactone, c-(PEG-PCL), was synthesized by a combination of ring-opening polymerization (ROP) and click chemistry. In addition, exactly analogous linear block copolymers have been prepared as a control sample to elucidate the role of polymer architecture in their self-assembly and acid-catalyzed degradation.
View Article and Find Full Text PDFThe surface modification of deep-cavity cavitands has been demonstrated by using the azide-alkyne "click" coupling to attach dendritic macromolecules or linear polymers onto their periphery. The resulting set of macromolecular cavitands exhibited tuneable solubility yet retained the ability to encapsulate guest molecules.
View Article and Find Full Text PDFRecent advances in the resolving power of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) enable the detailed characterization of linear homopolymers, and in particular provide invaluable data for the determination of their end-group functionalities. With the growing importance of macromolecular coupling reactions in building complex polymer architectures, the ability to accurately monitor end-group transformations is becoming increasingly important for synthetic polymer chemists. This tutorial demonstrates the application of MALDI-TOF MS in determining both end-group functionalities and their transformations for linear homopolymers.
View Article and Find Full Text PDF