The viscoelastic properties of the lung have important implications during respiratory mechanics in terms of lung movement or work of breathing, for example. However, this property has not been well characterized due to several reasons, such as the complex nature of the lung, difficulty accessing its tissues, and the lack of physical simulators that represent viscoelastic effects. This research proposes an electropneumatic system and a method to simulate the viscoelastic effect from temporary forces generated by the opposition of magnetic poles.
View Article and Find Full Text PDFBackground: Tuberculosis, one of the oldest diseases affecting human beings, is still considered as a world public health problem by the World Health Organization.
Method & Material: Therefore, there is a need for new and more powerful analytical methods for early illness diagnosis. With this idea in mind, the development of a High Fundamental Frequency (HFF) piezoelectric immunosensor for the sensitive detection of tuberculosis was undertaken.
Acoustic wave resonator techniques are widely used in in-liquid biochemical applications. The main challenges remaining are the improvement of sensitivity and limit of detection, as well as multianalysis capabilities and reliability. The sensitivity improvement issue has been addressed by increasing the sensor frequency, using different techniques such as high fundamental frequency quartz crystal microbalances (QCMs), surface generated acoustic waves (SGAWs) and film bulk acoustic resonators (FBARs).
View Article and Find Full Text PDF