Publications by authors named "Yei-Tsung Chen"

Background: Controlling the asymmetric distribution of phospholipids across biological membranes plays a pivotal role in the life cycle of cells; one of the most important contributors that maintain this lipid asymmetry are phospholipid-transporting adenosine triphosphatases (ATPases). Although sufficient information regarding their association with cancer exists, there is limited evidence linking the genetic variants of phospholipid-transporting ATPase family genes to prostate cancer in humans.

Methods: In this study, we investigated the association of 222 haplotype-tagging single-nucleotide polymorphisms (SNPs) in eight phospholipid-transporting ATPase genes with cancer-specific survival (CSS) and overall survival (OS) of 630 patients treated with androgen-deprivation therapy (ADT) for prostate cancer.

View Article and Find Full Text PDF

Background: Immunodeficiencies are genetic diseases known to predispose an individual to cancer owing to defective immunity towards malignant cells. However, the link between immunodeficiency and prostate cancer progression remains unclear. Therefore, the aim of this study was to evaluate the effects of common genetic variants among eight immunodeficiency pathway-related genes on disease recurrence in prostate cancer patients treated with radical prostatectomy.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how genetic variations in DNA damage repair genes affect survival outcomes in advanced prostate cancer patients undergoing androgen deprivation therapy.
  • - Researchers analyzed 167 single nucleotide polymorphisms (SNPs) in 18 DNA repair genes and found that the rs1400633 variant is notably associated with cancer-specific survival, overall survival, and progression-free survival.
  • - The rs1400633 genetic variant correlates with aggressive prostate cancer characteristics and higher expression levels in cancerous tissues, marking it as a significant prognostic biomarker for patient outcomes.
View Article and Find Full Text PDF
Article Synopsis
  • Familial dysautonomia (FD) is a genetic condition caused by a mutation in the ELP1 gene, which leads to reduced protein levels crucial for sensory and autonomic functions.
  • Researchers created mouse models to study FD and found that a complete loss of the Elp1 gene causes early embryonic death, while introducing human ELP1 in varying amounts can rescue embryonic development.
  • The study revealed that ELP1 is vital for nervous system gene expression, especially for longer genes, and identified specific gene sets that change in response to ELP1 levels.
View Article and Find Full Text PDF
Article Synopsis
  • - Neuregulins (NRGs) are key proteins that activate receptors involved in cell growth and survival, and this study investigates how genetic variations in the NRG signaling pathway could affect treatment outcomes for prostate cancer patients.
  • - An analysis of 459 genetic variants in 19 NRG pathway genes revealed that a specific variant (rs144160282 C > T) is linked to poorer cancer-specific survival, overall survival, and progression-free survival in 630 patients undergoing androgen-deprivation therapy (ADT).
  • - The study found that lower expression of the associated gene was connected to more aggressive prostate cancer traits, and further analysis showed reduced gene expression in cancer samples compared to normal tissue, suggesting this variant could serve as a potential predictor
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of genetic variants in hnRNP genes, specifically focusing on their impact on clinical outcomes in prostate cancer patients undergoing androgen-deprivation therapy.
  • Researchers analyzed 78 SNPs across 23 hnRNP genes in 630 patients and identified PTBP1 rs10420407 as a significant variant linked to poorer overall and cancer-specific survival.
  • The findings suggest that the A allele of PTBP1 rs10420407 could serve as an independent prognostic factor, with higher expression levels associated with more aggressive prostate cancer.
View Article and Find Full Text PDF

Circulating microRNAs offer attractive potential as epigenetic disease biomarkers by virtue of their biological stability and ready accessibility in liquid biopsies. Numerous clinical cohort studies have revealed unique microRNA profiles in different disease settings, suggesting utility as markers with diagnostic and prognostic applications. Given the complex network of microRNA functions in modulating gene expression and post-transcriptional modifications, the circulating microRNA landscape in disease may reflect pathophysiological status, providing valuable information for delineating distinct subtypes and/or stages of complex diseases.

View Article and Find Full Text PDF

Background: Clinicians need improved tools to better identify nonacute heart failure with preserved ejection fraction (HFpEF).

Objectives: The purpose of this study was to derive and validate circulating microRNA signatures for nonacute heart failure (HF).

Methods: Discovery and validation cohorts (N = 1,710), comprised 903 HF and 807 non-HF patients from Singapore and New Zealand (NZ).

View Article and Find Full Text PDF

Natriuretic Peptide Receptor 3 (NPR3), the clearance receptor for extracellular bio-active natriuretic peptides (NPs), plays important roles in the homeostasis of body fluid volume and vascular tone. Using luciferase reporter and antagomir-based silencing assays, we demonstrated that the expression of NPR3 could be modulated by microRNA-143 (miR-143-3p), a microRNA species with up-regulated circulating concentrations in clinical heart failure. The regulatory effect of miR-143 on NPR3 expression was further evidenced by the reciprocal relationship between miR-143 and NPR3 levels observed in hypoxia-treated human cardiac cells and in left ventricular tissue from rats undergoing experimental myocardial infarction.

View Article and Find Full Text PDF

The ankyrin repeat domain 1 (ANKRD1) protein is a cardiac-specific stress-response protein that is part of the muscle ankyrin repeat protein family. ANKRD1 is functionally pleiotropic, playing pivotal roles in transcriptional regulation, sarcomere assembly and mechano-sensing in the heart. Importantly, cardiac ANKRD1 has been shown to be highly induced in various cardiomyopathies and in heart failure, although it is still unclear what impact this may have on the pathophysiology of heart failure.

View Article and Find Full Text PDF

Deubiquitinases (DUBs) play a critical role in ubiquitin-directed signaling by catalytically removing the ubiquitin from substrate proteins. Ubiquitin-specific protease 15 (USP15), a member of the largest subfamily of cysteine protease DUBs, contains two conservative cysteine (Cys) and histidine (His) boxes. USP15 harbors two zinc-binding motifs that are essential for recognition of poly-ubiquitin chains.

View Article and Find Full Text PDF

Heart failure (HF) is a widely prevalent syndrome imposing a significant burden of morbidity and mortality world-wide. Differential circulating microRNA profiles observed in HF cohorts suggest the diagnostic utility of microRNAs as biomarkers. Given their function in fine tuning gene expression, alternations in microRNA landscape could reflecting the underlying mechanisms of disease and present potential therapeutic targets.

View Article and Find Full Text PDF

Myxomatous mitral valve prolapse (MMVP) and fibroelastic deficiency (FED) are two common variants of degenerative mitral valve disease (DMVD), which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are non-coding RNAs that play essential roles in modulating the gene expression in almost all biological events. In the past decade, the involvement of miRNAs in various cardiovascular disorders has been explored in numerous in vitro and in vivo studies. In this paper, studies focused upon the discovery of miRNAs, their target genes, and functionality are reviewed.

View Article and Find Full Text PDF

Heart failure (HF) imposes significant economic and public health burdens upon modern society. It is known that disturbances in neurohormonal status play an important role in the pathogenesis of HF. Therapeutics that antagonize selected neurohormonal pathways, specifically the renin-angiotensin-aldosterone and sympathetic nervous systems, have significantly improved patient outcomes in HF.

View Article and Find Full Text PDF

Studies in the cardiovascular research field have demonstrated the vital roles of microRNAs for proper cardiovascular development and functional maintenance. The involvement of aberrant microRNA expression leading to ontogenesis of cardiovascular diseases lends further support of the regulatory role of microRNAs in heart function. Hypoxic insult is one of the major factors that trigger downstream signal cascades which contribute to the pathogenesis of hypoxic/ischemic-related heart diseases.

View Article and Find Full Text PDF

Growing interest in lanthanide-doped nanoparticles for biological and medical uses has brought particular attention to their safety concerns. However, the intrinsic toxicity of this new class of optical nanomaterials in biological systems has not been fully evaluated. In this work, we systematically evaluate the long-term cytotoxicity of lanthanide-doped nanoparticles (NaGdF4 and NaYF4) to HeLa cells by monitoring cell viability (mitochondrial activity), adenosine triphosphate (ATP) level, and cell membrane integrity (lactate dehydrogenase release), respectively.

View Article and Find Full Text PDF

Natriuretic peptide receptor 3 (NPR3) is the clearance receptor for the cardiac natriuretic peptides (NPs). By modulating the level of NPs, NPR3 plays an important role in cardiovascular homeostasis. Although the physiological functions of NPR3 have been explored, little is known about its regulation in health or disease.

View Article and Find Full Text PDF

Aim: The potential diagnostic utility of circulating microRNAs in heart failure (HF) or in distinguishing HF with reduced vs. preserved left ventricular ejection fraction (HFREF and HFPEF, respectively) is unclear. We sought to identify microRNAs suitable for diagnosis of HF and for distinguishing both HFREF and HFPEF from non-HF controls and HFREF from HFPEF.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor γ (PPARγ, NR1C3) and testicular receptor 4 nuclear receptor (TR4, NR2C2) are two members of the nuclear receptor (NR) superfamily that can be activated by several similar ligands/activators including polyunsaturated fatty acid metabolites, such as 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, as well as some anti-diabetic drugs such as thiazolidinediones (TZDs). However, the consequences of the transactivation of these ligands/activators via these two NRs are different, with at least three distinct phenotypes. First, activation of PPARγ increases insulin sensitivity yet activation of TR4 decreases insulin sensitivity.

View Article and Find Full Text PDF

Recent studies emphasize the importance of mRNA splicing in human genetic disease, as 20-30% of all disease-causing mutations are predicted to result in mRNA splicing defects. The plasticity of the mRNA splicing reaction has made these mutations attractive candidates for the development of therapeutics. Familial dysautonomia (FD) is a severe neurodegenerative disorder, and all patients have an intronic IVS20+6T>C splice site mutation in the IKBKAP gene, which results in tissue-specific skipping of exon 20 and a corresponding reduction in ikappaB kinase complex associated protein (IKAP) levels.

View Article and Find Full Text PDF

Familial dysautonomia (FD), a devastating hereditary sensory and autonomic neuropathy, results from an intronic mutation in the IKBKAP gene that disrupts normal mRNA splicing and leads to tissue-specific reduction of IKBKAP protein (IKAP) in the nervous system. To better understand the roles of IKAP in vivo, an Ikbkap knockout mouse model was created. Results from our study show that ablating Ikbkap leads to embryonic lethality, with no homozygous Ikbkap knockout (Ikbkap(-)(/)(-)) embryos surviving beyond 12.

View Article and Find Full Text PDF

Unlabelled: Early studies demonstrated that whole-body androgen receptor (AR)-knockout mice with hypogonadism exhibit insulin resistance. However, details about the mechanisms underlying how androgen/AR signaling regulates insulin sensitivity in individual organs remain unclear. We therefore generated hepatic AR-knockout (H-AR(-/y)) mice and found that male H-AR(-/y) mice, but not female H-AR(-/-) mice, fed a high-fat diet developed hepatic steatosis and insulin resistance, and aging male H-AR(-/y) mice fed chow exhibited moderate hepatic steatosis.

View Article and Find Full Text PDF

Since Testicular Receptor 4 (TR4) was cloned, efforts have been made to elucidate its physiological function. To examine the putative functions of TR4, the conventional TR4 knockout (TR4(-/-)) mouse model was generated. Throughout postnatal and adult stages, TR4(-/-) mice exhibited behavioral deficits in motor coordination, suggesting impaired cerebellar function.

View Article and Find Full Text PDF