Background: Breast cancer is one of the most common malignancies worldwide and remains incurable after metastasis, with a 3-year overall survival rate of <40%.
Case Presentation: A 40-year-old, Caucasian patient with a grade-3 estrogen receptor-, progesterone receptor-, Her2-positive breast tumor and two lung nodules was treated with intramuscular targeted immunotherapy with trastuzumab and oral tamoxifen hormone therapy, together with customized intra-tumoral oncolytic virotherapy (IT-OV) over a 17-month period. PET/CT imaging at 3 and 6 months showed increased primary tumor size and metabolic glucose uptake in the primary tumor, axillary lymph nodes and lung nodules, which were paralleled by a hyperimmune reaction in the bones, liver, and spleen.
Background And Objectives: Children with autism spectrum disorder (ASD) present with distinctive clinical features. No objective laboratory assay has been developed to establish a diagnosis of ASD. Considering the known immunological associations with ASD, immunological biomarkers might enable ASD diagnosis and intervention at an early age when the immature brain has the highest degree of plasticity.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) remains an incurable condition, associated with a median survival time of 15 months with best standard of care and 5-year survival rate of <10%. We report on four GBM patients on combination treatment regimens that included oncolytic virus (OV) immunotherapy, who achieved clinical and radiological responses with long-term survival, thus far, of up to 14 years, and good quality of life. We discuss the radiological findings that provide new insights into this treatment, the scientific rationale of this innovative and promising therapy, and considerations for future research.
View Article and Find Full Text PDFRambam Maimonides Med J
October 2019
Objective: To compare the reported accuracy and sensitivity of the various modalities used to diagnose autism spectrum disorders (ASD) in efforts to help focus further biomarker research on the most promising methods for early diagnosis.
Methods: The Medline scientific literature database was searched to identify publications assessing potential clinical ASD biomarkers. Reports were categorized by the modality used to assess the putative markers, including protein, genetic, metabolic, or objective imaging methods.
Consequential to its essential role as a mechanical support and affinity regulator in extracellular matrices, collagen constitutes a highly sought after scaffolding material for regeneration and healing applications. However, substantiated concerns have been raised with regard to quality and safety of animal tissue-extracted collagen, particularly in relation to its immunogenicity, risk of disease transmission and overall quality and consistency. In parallel, contamination with undesirable cellular factors can significantly impair its bioactivity, vis-a-vis its impact on cell recruitment, proliferation and differentiation.
View Article and Find Full Text PDFTissue Eng Part A
July 2013
Collagen is a key component of the extracellular matrix, and by far the most prominent constituent of all load-bearing tissues. Its abundance and self-assembly capacities render it a practical scaffold material for tissue repair and regeneration applications. However, some difficulties exist in artificially regenerating functional collagen structures to match native tissues and their respective performances.
View Article and Find Full Text PDFAs a central element of the extracellular matrix, collagen is intimately involved in tissue development, remodeling, and repair and confers high tensile strength to tissues. Numerous medical applications, particularly, wound healing, cell therapy, bone reconstruction, and cosmetic technologies, rely on its supportive and healing qualities. Its synthesis and assembly require a multitude of genes and post-translational modifications, where even minor deviations can be deleterious or even fatal.
View Article and Find Full Text PDFReactive oxygen species (ROS) comprise a group of noxious byproducts of oxidative processes which participate in the induction of many common diseases. However, understanding their role in the regulation of normal physiological redox signaling is currently evolving. Detailed study of the dynamic functions of ROS within the biological milieu is difficult because of their high chemical reactivity, short lifetime, minute concentrations and cytotoxicity at high concentrations.
View Article and Find Full Text PDFVarious forms of cellular stress induce adaptive responses through poorly understood mechanisms. In maintaining homeostasis, endothelial cells respond and adapt to changes in oxidative stress that prevail in the circulation. Endothelial cells are also the target of many oxidative stress-based vascular therapies.
View Article and Find Full Text PDF