Wearable strain sensors have been attracting special attention in the detection of human posture and activity, as well as for the assessment of physical rehabilitation and kinematics. However, it is a challenge to fabricate stretchable and comfortable-to-wear permeable strain sensors that can provide highly accurate and continuous motion recording while exerting minimal constraints and maintaining low interference with the body. Herein, covalently grafting nanofibrous polyaniline (PANI) onto stretchable elastomer nanomeshes is reported to obtain a freestanding ultrathin (varying from 300 to 10 000 nm) strain sensor that has high gas permeability (10-33 mg h ).
View Article and Find Full Text PDFEngineering conducting polymer thin films with morphological homogeneity and long-range molecular ordering is intriguing to achieve high-performance organic electronics. Polyaniline (PANI) has attracted considerable interest due to its appealing electrical conductivity and diverse chemistry. However, the synthesis of large-area PANI thin film and the control of its crystallinity and thickness remain challenging because of the complex intermolecular interactions of aniline oligomers.
View Article and Find Full Text PDFRecent years have witnessed thriving progress of flexible and portable electronics, with very high demand for cost-effective and tailor-made multifunctional devices. Here, we report on an ingenious origami hierarchical sensor array (OHSA) written with a conductive ink. Thanks to origami as a controllable hierarchical framework for loading ink material, we have demonstrated that OHSA possesses unique time-space-resolved, high-discriminative pattern recognition (TSR-HDPR) features, qualifying it as a smart sensing device for simultaneous sensing and distinguishing of complex physical and chemical stimuli, including temperature, relative humidity, light and volatile organic compounds (VOCs).
View Article and Find Full Text PDFA flexible and stretchable field-effect transistor (FET) is an essential element in a number of modern electronics. To realize the potential of this device in harsh real-world conditions and to extend its application spectrum, new functionalities are needed to be introduced into the device. Here, solution-processable elements based on carbon nanotubes that empower flexible and stretchable FET with high hole-mobility (µ ≈ 10 cm V s ) and relatively low operating voltages (<8 V) and that retain self-healing properties of all FET components are reported.
View Article and Find Full Text PDFFlexible sensors can be widely used in future wearable devices to monitor people's health states. However, most of the sensors are sensitive to humidity and bending effects, limiting their application in a real-world environment. A new strategy is proposed for obtaining flexible sensors with good tolerance to humidity.
View Article and Find Full Text PDF