Background: As a promising strategy to overcome the therapeutic disadvantages of 6-mercaptopurine (6MP), we proposed the encapsulation of 6MP in chitosan nanoparticles (CNPs) to form the 6MP-CNPs complexes. The encapsulation was followed by the loading of complexes on gold nanoparticles (AuNPs) to generate a novel 6MP-CNPs-AuNPs nanocomposite to facilitate the chemo-photothermal therapeutic effect.
Methods: CNPs were produced based on the ionic gelation method of tripolyphosphate (TPP).
Background: The difficulty of achieving targeted drug delivery following administration of presently marketed anticancer therapeutics is still a concern. Metallic nanoparticles (NPs) appear to be promising in this regard. The present study focused on the use of gold nanoparticles (AuNPs) as a drug carrier for anticancer Doxorubicin (DOX) forming DOX-AuNPs nanocomposite.
View Article and Find Full Text PDFMulti-drug resistance (MDR) in addition to the damage to non-malignant normal cells are the most difficult in cancer treatment. Drug delivery and Plasmonic photothermal therapy based on the use of resonant metallic nanoparticles have developed as promising techniques to destroy cancer cells selectively. In the present work, gold nanoparticles (AuNPs) were synthesized using trisodium citrate.
View Article and Find Full Text PDFThe electrical characteristics of quad-crescent-shaped silicon nanowire (NW) solar cells (SCs) are numerically analyzed and as a result their performance optimized. The structure discussed consists of four crescents, forming a cavity that permits multiple light scattering with high trapping between the NWs. Additionally, new modes strongly coupled to the incident light are generated along the NWs.
View Article and Find Full Text PDFA green method was used for producing gold nanoparticles (Au NPs) using chitosan as a natural cationic, biodegradable and biocompatible polymer. In this method, chitosan acts as a reducing and stabilizing agent for the synthesis of Au NPs. Different concentrations of chitosan solutions (0.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
September 2002
A new system is proposed for tracking sensitive areas in the retina for computer-assisted laser treatment of choroidal neovascularization (CNV). The system consists of a fundus camera using red-free illumination mode interfaced to a computer that allows real-time capturing of video input. The first image acquired is used as the reference image and utilized by the treatment physician for treatment planning.
View Article and Find Full Text PDF