ACS Appl Mater Interfaces
September 2024
Phototherapy has demonstrated substantial development because in the second near-infrared (NIR-II) window it has a larger tissue penetration and fewer adverse consequences. In this work, a particular kind of NIR-II responsive Fe-doped carbon nanoparticles (FDCNs) is synthesized using a one-pot hydrothermal method for combined photothermal and chemodynamic therapy. The mesoporous nanostructure of FDCN, which has a size distribution that exceeds 225 nm, allows for effective acidification.
View Article and Find Full Text PDFMagnetite-based nanozymes have attracted great interest for catalytic cancer therapy enabled by catalyzing hydrogen peroxide (H O ) to produce highly toxic hydroxyl radicals (•OH) to kill tumor cells. However, their therapeutic efficacies remain low due to insufficient •OH. Here, a light-responsive carbon-encapsulated magnetite nanodoughnuts (CEMNDs) with dual-catalytic activities for photothermal-enhanced chemodynamic therapy (CDT) is reported.
View Article and Find Full Text PDFIn an effort to fulfill the strategy of sustainable development, Rhodamine B, a common and toxic organic pollutant in the textile industry, was reported for the first time as a single precursor to develop a kind of novel hydrophobic nitrogen-doped carbon dot (HNCD) through a green and facile one-pot solvothermal method. The HNCDs with an average size of 3.6 nm possess left and right water contact angles of 109.
View Article and Find Full Text PDFAll kinds of non-metal and metal-based nanozymes have been extensively explored as Fenton agents for Chemodynamic therapy (CDT). However, the low catalytic efficiency of non-metallic nanozymes and the susceptibility to oxidation and long-term toxicity of metallo-nanozymes limit their potential in CDT. In this study, we report a magneto-solvothermal method to tune the crystallinity and shape of polyethylene glycol (PEG)-ylated urchin-like nickel nanoclusters (named as 9T-PUNNC) at a high magnetic field with an intensity of 9 T for enhanced combined photothermal-chemodynamic therapy.
View Article and Find Full Text PDFCuprous-based nanozymes have demonstrated great potential for cascade chemodynamic therapy (CDT) due to their higher catalytic efficiency and simple reaction conditions. Here, hollow cuprous oxide@nitrogen-doped carbon (HCONC) dual-shell structures are designed as nanozymes for CDT oncotherapy. This HCONC with a size distribution of 130 nm is synthesized by a one-step hydrothermal method using cupric nitrate and dimethyl formamide as precursors.
View Article and Find Full Text PDFThe prevalence of tinnitus is positively correlated with hearing loss, although, tinnitus can also present alongside clinically normal pure-tone thresholds. As standard pure tone audiograms (PTA) only sample at octave or inter-octaves, they potentially can miss lesions between the tested frequencies. Here we investigate if tinnitus patients with normal audiograms have hearing loss missed by standard PTA testing, referred as "missed hearing loss" in the paper.
View Article and Find Full Text PDFRegional lymph node metastasis and distant metastasis are critical in the prognosis of laryngeal squamous cell carcinoma (LSCC). This study investigated the roles of miR-144-3p and E26 transformation specific-1 (ETS-1) in the invasion and migration of LSCC cells. The effects of miR-144-3p and ETS-1 on FaDu and Hep2 cell growth, migration and invasion were determined.
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
June 2015
Abnormal expression of micro-ribonucleic acid (miRNA) might be clinically valuable as a biomarker or treatment target in the early diagnosis, treatment, and prognosis of tumors. However, little is known concerning abnormal miRNA expression of laryngeal carcinoma, one of the most commonly encountered head and neck tumors. Microarray analysis was used to obtain miRNA-expression profiles of ten pairs of freshly frozen laryngeal carcinoma tissue and surrounding normal tissue specimens.
View Article and Find Full Text PDF