Publications by authors named "Yefanov O"

High-resolution X-ray imaging of noncrystalline objects is often achieved through the approach of scanning coherent diffractive imaging known as ptychography. The imaging resolution is usually limited by the scattering properties of the sample, where weak diffraction signals at the highest scattering angles compete with parasitic scattering. Here, we demonstrate that X-ray multilayer Laue lenses with a high numerical aperture (NA) can be used to create a strong reference beam that holographically boosts weak scattering from the sample over a large range of scattering angles, enabling high-resolution imaging that is tolerant of such background.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent advancements in the field include the approval of boronate-based β-lactamase inhibitors for treating multidrug-resistant bacteria, emphasizing the need for effective solutions.
  • * Researchers used time-resolved serial crystallography to gain insights into the binding mechanisms of β-lactamase CTX-M-14, collecting detailed data that enhances the understanding of enzymatic reactions and resistance.
View Article and Find Full Text PDF

Multilayer Laue lenses are volume diffractive optical elements for hard X-rays with the potential to focus beams to sizes as small as 1 nm. This ability is limited by the precision of the manufacturing process, whereby systematic errors that arise during fabrication contribute to wavefront aberrations even after calibration of the deposition process based on wavefront metrology. Such aberrations can be compensated by using a phase plate.

View Article and Find Full Text PDF
Article Synopsis
  • The main protease (M) of SARS-CoV-2 is crucial for the virus's functionality and is considered a potential target for drug development, as it is only active in its reduced form.
  • When oxidized, M's activity halts but can be restored, indicating an evolutionary adaptation to oxidative environments, although the protective mechanisms haven't been fully elucidated.
  • Researchers determined the crystal structure of oxidized M, revealing a disulfide bond that affects its dimer stability and crystallization, providing insights into the protein's response to oxidative stress and its structural study conditions.*
View Article and Find Full Text PDF

Serial crystallography (SX) has become an established technique for protein structure determination, especially when dealing with small or radiation-sensitive crystals and investigating fast or irreversible protein dynamics. The advent of newly developed multi-megapixel X-ray area detectors, capable of capturing over 1000 images per second, has brought about substantial benefits. However, this advancement also entails a notable increase in the volume of collected data.

View Article and Find Full Text PDF

Photolyase is an enzyme that uses light to catalyze DNA repair. To capture the reaction intermediates involved in the enzyme's catalytic cycle, we conducted a time-resolved crystallography experiment. We found that photolyase traps the excited state of the active cofactor, flavin adenine dinucleotide (FAD), in a highly bent geometry.

View Article and Find Full Text PDF

The proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.

View Article and Find Full Text PDF

For decades, researchers have elucidated essential enzymatic functions on the atomic length scale by tracing atomic positions in real-time. Our work builds on possibilities unleashed by mix-and-inject serial crystallography (MISC) at X-ray free electron laser facilities. In this approach, enzymatic reactions are triggered by mixing substrate or ligand solutions with enzyme microcrystals.

View Article and Find Full Text PDF

The highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure, induced by the necessarily high energy of short-wavelength radiation. Imaging the inelastically scattered X-rays at a photon energy of 60 keV (0.02 nm wavelength) offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography.

View Article and Find Full Text PDF

We demonstrate that x-ray fluorescence emission, which cannot maintain a stationary interference pattern, can be used to obtain images of structures by recording photon-photon correlations in the manner of the stellar intensity interferometry of Hanbury Brown and Twiss. This is achieved utilizing femtosecond-duration pulses of a hard x-ray free-electron laser to generate the emission in exposures comparable to the coherence time of the fluorescence. Iterative phasing of the photon correlation map generated a model-free real-space image of the structure of the emitters.

View Article and Find Full Text PDF

Macromolecular crystallography is a well established method in the field of structural biology and has led to the majority of known protein structures to date. After focusing on static structures, the method is now under development towards the investigation of protein dynamics through time-resolved methods. These experiments often require multiple handling steps of the sensitive protein crystals, e.

View Article and Find Full Text PDF

For decades, researchers have been determined to elucidate essential enzymatic functions on the atomic lengths scale by tracing atomic positions in real time. Our work builds on new possibilities unleashed by mix-and-inject serial crystallography (MISC) at X-ray free electron laser facilities. In this approach, enzymatic reactions are triggered by mixing substrate or ligand solutions with enzyme microcrystals .

View Article and Find Full Text PDF

With the development of X-ray free-electron lasers (XFELs), producing pulses of femtosecond durations comparable with the coherence times of X-ray fluorescence, it has become possible to observe intensity-intensity correlations due to the interference of emission from independent atoms. This has been used to compare durations of X-ray pulses and to measure the size of a focusedX-ray beam, for example. Here it is shown that it is also possible to observe the interference of fluorescence photons through the measurement of the speckle contrast of angle-resolved fluorescence patterns.

View Article and Find Full Text PDF

X-ray crystallography has witnessed a massive development over the past decade, driven by large increases in the intensity and brightness of X-ray sources and enabled by employing high-frame-rate X-ray detectors. The analysis of large data sets is done via automatic algorithms that are vulnerable to imperfections in the detector and noise inherent with the detection process. By improving the model of the behaviour of the detector, data can be analysed more reliably and data storage costs can be significantly reduced.

View Article and Find Full Text PDF

Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired.

View Article and Find Full Text PDF

In recent years, X-ray speckle tracking techniques have emerged as viable tools for wavefront metrology and sample imaging applications, and have been actively developed for use at synchrotron light sources. Speckle techniques can recover an image free of aberrations and can be used to measure wavefronts with a high angular sensitivity. Since they are compatible with low-coherence sources they can be also used with laboratory X-ray sources.

View Article and Find Full Text PDF

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library.

View Article and Find Full Text PDF
Article Synopsis
  • The European XFEL and LCLS II are powerful X-ray sources that can collect detailed data from crystals at rapid megahertz rates.
  • Researchers used these X-ray pulses to gather two complete datasets from a single lysozyme crystal in less than 1 microsecond, achieving high-resolution structures.
  • The comparison of these structures showed no radiation damage or significant changes, indicating that this multi-hit SFX technique can effectively capture fast structural changes in crystals.
View Article and Find Full Text PDF
Article Synopsis
  • * Two innovative methods are proposed: common-line principal component analysis (PCA) for rough, automated classification, and variation auto-encoders (VAEs) for generating detailed 3D structures of objects.
  • * Implemented with a noise-tolerant algorithm, these methods show effectiveness on experimental datasets from gold nanoparticles, paving the way for new research on diverse topics like nanocrystal growth and phase transitions.
View Article and Find Full Text PDF

A way has been developed to measure the unit-cell parameters of a single crystal just from an energy scan with X-rays, even when the exact energy of the X-rays is not well defined due to an error in the pitch angle of the monochromator. The precision of this measurement reaches da/a ∼ 1 × 10. The method is based on the analysis of diffraction losses of the beam, transmitted through a single crystal (the so-called `glitch effect').

View Article and Find Full Text PDF

Multimeric protein assemblies are abundant in nature. Streptavidin is an attractive protein that provides a paradigm system to investigate the intra- and intermolecular interactions of multimeric protein complexes. Also, it offers a versatile tool for biotechnological applications.

View Article and Find Full Text PDF

Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how enzymes interact with substrates or ligands in real time, specifically observing the first phase of the reaction using advanced imaging techniques.* -
  • Researchers utilized the European XFEL (EuXFEL) to achieve near-atomic resolution and track ceftriaxone binding to β-lactamase, combining high repetition rates and mix-and-inject technology for time-resolved measurements.* -
  • The findings included calculating a diffusion coefficient to understand concentrations in enzyme crystals over time and describing the binding of the inhibitor sulbactam, showcasing the potential of EuXFEL for biomedical research.*
View Article and Find Full Text PDF

A peak-finding algorithm for serial crystallography (SX) data analysis based on the principle of 'robust statistics' has been developed. Methods which are statistically robust are generally more insensitive to any departures from model assumptions and are particularly effective when analysing mixtures of probability distributions. For example, these methods enable the discretization of data into a group comprising inliers ( the background noise) and another group comprising outliers ( Bragg peaks).

View Article and Find Full Text PDF

The COVID-19 pandemic has resulted in 198 million reported infections and more than 4 million deaths as of July 2021 (covid19.who.int).

View Article and Find Full Text PDF