Biomimetics (Basel)
April 2023
Recently, iron-based sulfides, including iron sulfide minerals and biological iron sulfide clusters, have attracted widespread interest, owing to their excellent biocompatibility and multi-functionality in biomedical applications. As such, controlled synthesized iron sulfide nanomaterials with elaborate designs, enhanced functionality and unique electronic structures show numerous advantages. Furthermore, iron sulfide clusters produced through biological metabolism are thought to possess magnetic properties and play a crucial role in balancing the concentration of iron in cells, thereby affecting ferroptosis processes.
View Article and Find Full Text PDFAlthough some progress has been made in the treatment of cancer, challenges remain. In recent years, advancements in nanotechnology and stem cell therapy have provided new approaches for use in regenerative medicine and cancer treatment. Among them, magnetic nanomaterials have attracted widespread attention in the field of regenerative medicine and cancer; this is because they have high levels of safety and low levels of invasibility, promote stem cell differentiation, and affect biological nerve signals.
View Article and Find Full Text PDFBroadband near-infrared (NIR) photothermal and photoacoustic agents covering from the first NIR (NIR-I) to the second NIR (NIR-II) biowindow are of great significance for imaging and therapy of cancers. In this work, ultrathin two-dimensional plasmonic PtAg nanosheets are discovered with strong broadband light absorption from NIR-I to NIR-II biowindow, which exhibit outstanding photothermal and photoacoustic effects under both 785 and 1064 nm lasers. Photothermal conversion efficiencies (PCEs) of PtAg nanosheets reach 19.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2020
Since H5N1 virus is a highly infectious pathogen that causes outbreaks of avian influenza, developing a sensitive and rapid diagnostic platform to sense it becomes significant. Here, a novel label-free fluorescence sensing platform based on DNA-templated silver nanoclusters (DNA-Ag NCs) is developed to detect the H5N1 gene sequence representing H5N1 virus. The three-segment-branched DNA structure with closed cytosine-rich loop is designed as an effective template to produce fluorescent Ag NCs, which is different with the previous design of cytosine-rich loop formed by hairpin-like single-stranded DNA or double-stranded DNA.
View Article and Find Full Text PDF