Publications by authors named "Yeeun Son"

Myeloblastosis (MYB)-like proteins are a family of highly conserved transcription factors in animals, plants, and fungi and are involved in the regulation of mRNA expression of genes. In this study, we identified and characterized one MYB-like protein in the model organism Aspergillus nidulans. We screened the mRNA levels of genes encoding MYB-like proteins containing two MYB repeats in conidia and found that the mRNA levels of four genes including flbD, cicD, and two uncharacterized genes, were high in conidia.

View Article and Find Full Text PDF

Asexual spores, called conidia, are key reproductive fungal particles that enable survival in harsh environmental conditions or host systems. The conidia can infect humans, animals, and plants to cause various fungal diseases. Transcription factors, including VosA, WetA, and SscA, have key roles in conidia formation and long-term survival in .

View Article and Find Full Text PDF

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway.

View Article and Find Full Text PDF

Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies.

View Article and Find Full Text PDF

Fungal spores are specialized dormant cells that act as primary reproductive biological particles and exhibit strong viability under extremely harsh conditions. They contaminate a variety of crops and foods, causing severe health hazards to humans and animals. Previous studies demonstrated that a spore-specific transcription factor SscA plays pivotal roles in the conidiogenesis of the model organism Aspergillus nidulans.

View Article and Find Full Text PDF

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane.

View Article and Find Full Text PDF

All life forms have evolved to respond appropriately to various environmental and internal cues. In the animal kingdom, the prototypical regulator class of such cellular responses is the Rel homology domain proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Fungi, the close relatives of animals, have also evolved with their own NF-κB-like regulators called velvet family proteins to govern cellular and chemical development.

View Article and Find Full Text PDF

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs, yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane.

View Article and Find Full Text PDF

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized by the Kennedy pathway from choline and ethanolamine, respectively. Despite the importance of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here, we show that FLVCR1, whose mutation leads to the neurodegenerative syndrome PCARP, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway.

View Article and Find Full Text PDF

Filamentous fungi produce myriads of asexual spores, which are the main reproductive particles that act as infectious or allergenic agents. Although the serial of asexual sporogenesis is coordinated by various genetic regulators, there remain uncharacterized transcription factors in . To understand the underlying mechanism of spore formation, integrity, and viability, we have performed comparative transcriptomic analyses on three species and found a spore-specific transcription factor, SscA.

View Article and Find Full Text PDF

The forkhead domain genes are important for development and morphogenesis in fungi. Six forkhead genes - have been found in the genome of the model filamentous Ascomycete . To identify the gene(s) associated with fungal development, we examined mRNA levels of these six genes and found that the level of and mRNA was significantly elevated during asexual development and in conidia.

View Article and Find Full Text PDF

The genus , one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, , as a key model organism, has been extensively studied to understand the mechanisms governing growth and development, physiology, and gene regulation in fungi. primarily reproduces by forming millions of asexual spores known as conidia.

View Article and Find Full Text PDF

Genome-wide association studies (GWASs) of serum metabolites have the potential to uncover genes that influence human metabolism. Here, we combined an integrative genetic analysis that associates serum metabolites to membrane transporters with a coessentiality map of metabolic genes. This analysis revealed a connection between feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) and phosphocholine, a downstream metabolite of choline metabolism.

View Article and Find Full Text PDF

is a representative fungal species in the section Flavi and has been used as a model system to gain insights into fungal development and toxin production. has several adverse effects on humans, including the production of the most carcinogenic mycotoxin aflatoxins and causing aspergillosis in immune-compromised patients. In addition, infection of crops results in economic losses due to yield loss and aflatoxin contamination.

View Article and Find Full Text PDF

The regulators VosA and VelB are primarily involved in spore maturation and dormancy. Previous studies found that the VosA-VelB hetero-complex coordinates certain target genes that are related to fungal differentiation and conidial maturation in . Here, we characterized the VosA/VelB-inhibited developmental gene in .

View Article and Find Full Text PDF

In filamentous fungi, asexual development involves cellular differentiation and metabolic remodeling leading to the formation of intact asexual spores. The development of asexual spores (conidia) in is precisely coordinated by multiple transcription factors (TFs), including VosA, VelB, and WetA. Notably, these three TFs are essential for the structural and metabolic integrity, i.

View Article and Find Full Text PDF

Homeobox transcription factors are conserved in eukaryotes and act as multi-functional transcription factors in filamentous fungi. Previously, it was demonstrated that HbxB governs fungal development and spore viability in . Here, the role of HbxB in was further characterized.

View Article and Find Full Text PDF

Species of the genus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus .

View Article and Find Full Text PDF

McrA is a key transcription factor that functions as a global repressor of fungal secondary metabolism in Aspergillus species. Here, we report that mcrA is one of the VosA-VelB target genes and McrA governs the cellular and metabolic development in Aspergillus nidulans. The deletion of mcrA resulted in a reduced number of conidia and decreased mRNA levels of brlA, the key asexual developmental activator.

View Article and Find Full Text PDF

In the species, conidia are asexual spores that are infectious particles responsible for propagation. Conidia contain various mycotoxins that can have detrimental effects in humans. Previous study demonstrated that VadA is required for fungal development and spore viability in the model fungus .

View Article and Find Full Text PDF

The homeobox domain-containing transcription factors play an important role in the growth, development, and secondary metabolism in fungi and other eukaryotes. In this study, we characterized the roles of the genes coding for homeobox-type proteins in the model organism Aspergillus nidulans. To examine their roles in A.

View Article and Find Full Text PDF

The DnaJ family of proteins (or J-proteins) are molecular chaperones that govern protein folding, degradation, and translocation in many organisms. Although J-proteins play key roles in eukaryotic and prokaryotic biology, the role of J-proteins in Aspergillus species is currently unknown. In this study, we characterized the dnjA gene, which encodes a putative DnaJ protein, in two Aspergillus species: Aspergillus nidulans and Aspergillus flavus.

View Article and Find Full Text PDF

Filamentous fungi reproduce asexually or sexually, and the processes of asexual and sexual development are tightly regulated by a variety of transcription factors. In this study, we characterized a Zn2Cys6 transcription factor in two Aspergillus species, A. nidulans (AN5859) and A.

View Article and Find Full Text PDF

MonA is a subunit of a guanine nucleotide exchange factor that is important for vacuole passing and autophagy processes in eukaryotes. In this study, we characterized the function of MonA, an orthologue of Mon1, in the model fungus and a toxigenic fungus . In , the absence of led to decreased fungal growth, reduced asexual reproduction, and defective cleistothecia production.

View Article and Find Full Text PDF

The Mkt1-Pbp1 complex promotes mating-type switching by regulating the translation of mRNA in . Here, we performed immunoprecipitation assays and mass spectrometry analyses in the human fungal pathogen to show that Pbp1, a poly(A)-binding protein-binding protein, interacts with Mkt1 containing a PIN like-domain. Association of Pbp1 with Mkt1 was confirmed by co-immunoprecipitation assays.

View Article and Find Full Text PDF