Publications by authors named "Yee-Whye Teh"

We present as a guiding framework for statistical modelling to assist policy makers asking multiple questions using diverse datasets in the face of an evolving pandemic response. Interoperability provides an important set of principles for future pandemic preparedness, through the joint design and deployment of adaptable systems of statistical models for disease surveillance using probabilistic reasoning. We illustrate this through case studies for inferring and characterising spatial-temporal prevalence and reproduction numbers of SARS-CoV-2 infections in England.

View Article and Find Full Text PDF

We use an individual-level transmission and contact simulation model to explore the effectiveness and resource requirements of various test-trace-isolate (TTI) strategies for reducing the spread of SARS-CoV-2 in the UK, in the context of different scenarios with varying levels of stringency of non-pharmaceutical interventions. Based on modelling results, we show that self-isolation of symptomatic individuals and quarantine of their household contacts has a substantial impact on the number of new infections generated by each primary case. We further show that adding contact tracing of non-household contacts of confirmed cases to this broader package of interventions reduces the number of new infections otherwise generated by 5-15%.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed data from various European and non-European countries from January to May 2020 to evaluate the impact of different NPIs on virus transmission.
  • * Key findings showed that closing educational institutions, limiting gatherings to 10 people or less, and shutting down face-to-face businesses significantly reduced transmission, while stay-at-home orders had a smaller effect.
View Article and Find Full Text PDF

Predicting the impact of noncoding genetic variation requires interpreting it in the context of three-dimensional genome architecture. We have developed deepC, a transfer-learning-based deep neural network that accurately predicts genome folding from megabase-scale DNA sequence. DeepC predicts domain boundaries at high resolution, learns the sequence determinants of genome folding and predicts the impact of both large-scale structural and single base-pair variations.

View Article and Find Full Text PDF

Advances in machine learning (ML) and artificial intelligence (AI) present an opportunity to build better tools and solutions to help address some of the world's most pressing challenges, and deliver positive social impact in accordance with the priorities outlined in the United Nations' 17 Sustainable Development Goals (SDGs). The AI for Social Good (AI4SG) movement aims to establish interdisciplinary partnerships centred around AI applications towards SDGs. We provide a set of guidelines for establishing successful long-term collaborations between AI researchers and application-domain experts, relate them to existing AI4SG projects and identify key opportunities for future AI applications targeted towards social good.

View Article and Find Full Text PDF

The problem of estimating discovery probabilities originated in the context of statistical ecology, and in recent years it has become popular due to its frequent appearance in challenging applications arising in genetics, bioinformatics, linguistics, designs of experiments, machine learning, etc. A full range of statistical approaches, parametric and nonparametric as well as frequentist and Bayesian, has been proposed for estimating discovery probabilities. In this article, we investigate the relationships between the celebrated Good-Turing approach, which is a frequentist nonparametric approach developed in the 1940s, and a Bayesian nonparametric approach recently introduced in the literature.

View Article and Find Full Text PDF

We describe a way of modeling high-dimensional data vectors by using an unsupervised, nonlinear, multilayer neural network in which the activity of each neuron-like unit makes an additive contribution to a global energy score that indicates how surprised the network is by the data vector. The connection weights that determine how the activity of each unit depends on the activities in earlier layers are learned by minimizing the energy assigned to data vectors that are actually observed and maximizing the energy assigned to "confabulations" that are generated by perturbing an observed data vector in a direction that decreases its energy under the current model.

View Article and Find Full Text PDF

We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm.

View Article and Find Full Text PDF

Belief propagation (BP) on cyclic graphs is an efficient algorithm for computing approximate marginal probability distributions over single nodes and neighboring nodes in the graph. However, it does not prescribe a way to compute joint distributions over pairs of distant nodes in the graph. In this article, we propose two new algorithms for approximating these pairwise probabilities, based on the linear response theorem.

View Article and Find Full Text PDF