Bio-inspired fibrillar adhesives have received worldwide attention but their potentials have been limited by a trade-off between adhesion strength and adhesion switchability, and a size scale effect that restricts the fibrils to micro/nanoscales. Here, we report a class of adhesive fibrils that achieve unprecedented adhesion strength (∼2 MPa), switchability (∼2000), and scalability (up to millimeter-scale at the single fibril level), by leveraging the rubber-to-glass (R2G) transition in shape memory polymers (SMPs). Moreover, R2G SMP fibrillar adhesive arrays exhibit a switchability of >1000 (with the aid of controlled buckling) and an adhesion efficiency of 57.
View Article and Find Full Text PDFSmart adhesives that can be applied and removed on demand play an important role in modern life and manufacturing. However, current smart adhesives made of elastomers suffer from the long-standing challenges of the adhesion paradox (rapid decrease in adhesion strength on rough surfaces despite adhesive molecular interactions) and the switchability conflict (trade-off between adhesion strength and easy detachment). Here, we report the use of shape-memory polymers (SMPs) to overcome the adhesion paradox and switchability conflict on rough surfaces.
View Article and Find Full Text PDF