Publications by authors named "Yee Tai"

: Doxorubicin (DOX) is commonly used as a chemotherapeutic agent for the treatment of breast cancer. Nonetheless, its systemic delivery via intravenous injection and toxicity towards healthy tissues commonly result in a broad range of detrimental side effects. Breast cancer severity was previously shown to be correlated with TRPC1 channel expression that conferred upon it enhanced vulnerability to pulsed electromagnetic field (PEMF) therapy.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that instigates enzymatic cascades of developmental consequence and often impinge on mitochondrial function and biogenesis.

View Article and Find Full Text PDF

Concurrent optical and magnetic stimulation (COMS) combines extremely low-frequency electromagnetic and light exposure for enhanced wound healing. We investigated the potential mechanistic synergism between the magnetic and light components of COMS by comparing their individual and combined cellular responses. Lone magnetic field exposure produced greater enhancements in cell proliferation than light alone, yet the combined effects of magnetic fields and light were supra-additive of the individual responses.

View Article and Find Full Text PDF

This study investigates CD151, a protein linked to cancer progression, in non-small cell lung cancer (NSCLC) patients without epidermal growth factor receptor (EGFR) mutations. These patients often have limited treatment options. The study used retrospective analysis to examine 157 adenocarcinoma biopsy specimens and 199 patient cases from The Cancer Genome Atlas, correlating CD151 expression with patient survival.

View Article and Find Full Text PDF

Briefly (10 min) exposing C2C12 myotubes to low amplitude (1.5 mT) pulsed electromagnetic fields (PEMFs) generated a conditioned media (pCM) that was capable of mitigating breast cancer cell growth, migration, and invasiveness in vitro, whereas the conditioned media harvested from unexposed myotubes, representing constitutively released secretome (cCM), was less effective. Administering pCM to breast cancer microtumors engrafted onto the chorioallantoic membrane of chicken eggs reduced tumor volume and vascularity.

View Article and Find Full Text PDF

Background: Mixed photon-electron beam radiotherapy (MBRT) is a technique that combines the use of both photons and electrons in one single treatment plan to exploit their advantageous and complimentary characteristics. Compared to other photon treatment modalities, it has been shown that the MBRT technique contributes to better target coverage and organ-at-risk (OAR) sparing. However, the use of combined photons and electrons in one delivery makes the technique more complex and a well-established quality assurance (QA) protocol for MBRT is essential.

View Article and Find Full Text PDF

Muscle function reflects muscular mitochondrial status, which, in turn, is an adaptive response to physical activity, representing improvements in energy production for de novo biosynthesis or metabolic efficiency. Differences in muscle performance are manifestations of the expression of distinct contractile-protein isoforms and of mitochondrial-energy substrate utilization. Powerful contractures require immediate energy production from carbohydrates outside the mitochondria that exhaust rapidly.

View Article and Find Full Text PDF

Brief (10 min) weekly exposure to low energy pulsed electromagnetic fields (PEMFs) has been shown to improve human muscle mitochondrial bioenergetics and attenuate systemic lipotoxicity following anterior cruciate ligament surgical reconstruction. Here we present data generated from 101 participants, 62% female, aged 38-91 years, recruited from the QuantumTx Demo Centre in Singapore, wherein 87% of participants ( = 88) presented with pre-existing mobility dysfunction and 13% ( = 13) were healthy volunteers. Participants were recruited if: (i) not pregnant; (ii) above 35 years of age and; (iii) without surgical implants.

View Article and Find Full Text PDF

Aims: Experimental studies demonstrate protective effects of doxycycline on myocardial ischaemia-reperfusion injury. The trial investigated whether doxycycline administered prior to reperfusion in patients presenting with ST-elevation myocardial infarction (STEMI) reduces infarct size (IS) and ameliorates adverse left ventricular (LV) remodelling.

Methods And Results: In this randomized, double-blind, placebo-controlled trial, patients presenting with STEMI undergoing primary percutaneous coronary intervention (PPCI) were randomized to either intravenous doxycycline or placebo prior to reperfusion followed by 7 days of oral doxycycline or placebo.

View Article and Find Full Text PDF

Background: Metabolic disruption commonly follows Anterior Cruciate Ligament Reconstruction (ACLR) surgery. Brief exposure to low amplitude and frequency pulsed electromagnetic fields (PEMFs) has been shown to promote and murine myogeneses via the activation of a calcium-mitochondrial axis conferring systemic metabolic adaptations. This randomized-controlled pilot trial sought to detect local changes in muscle structure and function using MRI, and systemic changes in metabolism using plasma biomarker analyses resulting from ACLR, with or without accompanying PEMF therapy.

View Article and Find Full Text PDF

Background: Adrenaline is routinely administered during cardiac arrest resuscitation. Using a novel murine model of cardiac arrest, this study evaluates the effects of adrenaline use on survival and end-organ injury.

Methods: A total of 58 mice, including cardiac arrest (CA) and sham (SHAM) groups received intravenous potassium chloride either as a bolus (CA) or slow infusion (SHAM), inducing ECG-confirmed asystole (in CA only) for 4-minutes prior to intravenous adrenaline (+ADR;250 ul,32 ug/ml) or saline (-ADR;250 ul) and manual chest compressions (300 BPM) for 4-minutes.

View Article and Find Full Text PDF

Pulsing electromagnetic fields (PEMFs) have been shown to promote in vitro and in vivo myogeneses via mitohormetic survival adaptations of which secretome activation is a key component. A single 10-min exposure of donor myoblast cultures to 1.5 mT amplitude PEMFs produced a conditioned media (pCM) capable of enhancing the myogenesis of recipient cultures to a similar degree as direct magnetic exposure.

View Article and Find Full Text PDF
Article Synopsis
  • The correction addresses errors found in the original article, ensuring the scientific accuracy of the findings and conclusions.
  • It clarifies specific data points and methodology that were previously misrepresented or unclear.
  • This update is crucial for future research and understanding in the relevant field of study, ensuring that subsequent work builds on correct information.
View Article and Find Full Text PDF

Chemotherapy is the mainstream treatment modality for invasive breast cancer. Unfortunately, chemotherapy-associated adverse events can result in early termination of treatment. Paradoxical effects of chemotherapy are also sometimes observed, whereby prolonged exposure to high doses of chemotherapeutic agents results in malignant states resistant to chemotherapy.

View Article and Find Full Text PDF

Pulsed electromagnetic fields (PEMFs) are capable of specifically activating a TRPC1-mitochondrial axis underlying cell expansion and mitohormetic survival adaptations. This study characterizes cell-derived vesicles (CDVs) generated from C2C12 murine myoblasts and shows that they are equipped with the sufficient molecular machinery to confer mitochondrial respiratory capacity and associated proliferative responses upon their fusion with recipient cells. CDVs derived from wild type C2C12 myoblasts include the cation-permeable transient receptor potential (TRP) channels, TRPC1 and TRPA1, and directly respond to PEMF exposure with TRPC1-mediated calcium entry.

View Article and Find Full Text PDF

Exercise modulates metabolism and the gut microbiome. Brief exposure to low mT-range pulsing electromagnetic fields (PEMFs) was previously shown to accentuate in vitro myogenesis and mitochondriogenesis by activating a calcium-mitochondrial axis upstream of PGC-1α transcriptional upregulation, recapitulating a genetic response implicated in exercise-induced metabolic adaptations. We compared the effects of analogous PEMF exposure (1.

View Article and Find Full Text PDF

Introduction: Endoscopic submucosal dissection (ESD) in the colon and rectum has been developed with good reported outcomes. The main advantage of ESD is the ability to perform en bloc resection, which has implications for complete excision and pathological analysis. Locally, the use of ESD in colonic lesions has seen recent traction.

View Article and Find Full Text PDF

We show that both supplemental and ambient magnetic fields modulate myogenesis. A lone 10 min exposure of myoblasts to 1.5 mT amplitude supplemental pulsed magnetic fields (PEMFs) accentuated myogenesis by stimulating transient receptor potential (TRP)-C1-mediated calcium entry and downstream nuclear factor of activated T cells (NFAT)-transcriptional and P300/CBP-associated factor (PCAF)-epigenetic cascades, whereas depriving myoblasts of ambient magnetic fields slowed myogenesis, reduced TRPC1 expression, and silenced NFAT-transcriptional and PCAF-epigenetic cascades.

View Article and Find Full Text PDF

Microsatellite repeat expansion disease loci can exhibit pleiotropic clinical and biological effects depending on repeat length. Large expansions in C9orf72 (100s-1000s of units) are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). However, whether intermediate expansions also contribute to neurodegenerative disease is not well understood.

View Article and Find Full Text PDF

Mutations in C9orf72 leading to hexanucleotide expansions are the most common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A phenotype resembling ALS and FTD is seen in transgenic mice overexpressing the hexanucleotide expansions, but is absent in C9orf72-deficient mice. Thus, the exact function of C9orf72 in neurons and how loss of C9orf72 may contribute to neuronal dysfunction remains to be clearly defined.

View Article and Find Full Text PDF

Background: Surgical site infection (SSI) is mainly due to endogenous bacteria. Topical decolonization is a preoperative intervention currently advised for proven nasal carriers of Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe uptake via S-nitrosylation of divalent metal transporter 1 (DMT1).

View Article and Find Full Text PDF

Exposure to divalent metals such as iron and manganese is thought to increase the risk for Parkinson's disease (PD). Under normal circumstances, cellular iron and manganese uptake is regulated by the divalent metal transporter 1 (DMT1). Accordingly, alterations in DMT1 levels may underlie the abnormal accumulation of metal ions and thereby disease pathogenesis.

View Article and Find Full Text PDF

Background: Airway smooth muscle (ASM) contraction underpins airway constriction; however, underlying mechanisms for airway hyperresponsiveness (AHR) remain incompletely defined. CD151, a 4-transmembrane glycoprotein that associates with laminin-binding integrins, is highly expressed in the human lung. The role of CD151 in ASM function and its relationship to asthma have yet to be elucidated.

View Article and Find Full Text PDF