The coronavirus-induced disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections, has had a devastating impact on millions of lives globally, with severe mortality rates and catastrophic social implications. Developing tools for effective vaccine strategies and platforms is essential for controlling and preventing the recurrence of such pandemics. Moreover, molecular virology tools that facilitate the study of viral pathogens, impact of viral mutations, and interactions with various host proteins are essential.
View Article and Find Full Text PDFTwenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR.
View Article and Find Full Text PDFPatients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.
View Article and Find Full Text PDFLong-acting (LA) anti-HIV regimens show promise for increasing dosing intervals and consequently, improving the patients' quality of life. The first FDA-approved LA therapy is Cabenuva, which comprises rilpivirine (a non-nucleoside reverse transcriptase inhibitor) and cabotegravir (integrase strand transfer inhibitor). Novel promising LA anti-HIV agents such as lenacapavir (a capsid-targeting antiviral) and islatravir (EFdA, a nucleoside reverse transcriptase translocation inhibitor) need to be explored as combination therapies.
View Article and Find Full Text PDFCurr Res Pharmacol Drug Discov
August 2021
Remdesivir, a monophosphate prodrug of nucleoside analog GS-441524, is widely used for the treatment of moderate to severe COVID-19. It has been suggested to use GS-441524 instead of remdesivir in the clinic and in new inhalation formulations. Thus, we compared the anti-SARS-CoV-2 activity of remdesivir and GS-441524 in Vero E6, Vero CCL-81, Calu-3, Caco-2 cells, and anti-HCoV-OC43 activity in Huh-7 cells.
View Article and Find Full Text PDFDengue viruses (DENV) and Zika virus (ZIKV) are related mosquito-borne flaviviruses with similar disease manifestations, vector ecologies, and geographic ranges. The ability to differentiate these viruses serologically is vital due to the teratogenic nature of ZIKV and the potential confounding of preexisting cross-reactive anti-DENV antibodies. Here, we illustrate the kinetics of the IgM neutralizing antibody (NAb) response using longitudinal samples ranging from acute ZIKV infection to late convalescence from individuals with evidence of prior DENV infection.
View Article and Find Full Text PDFIn response to the 2016 global public health emergency of international concern announced by the World Health Organization surrounding Zika virus (ZIKV) outbreaks, we developed a purified inactivated Zika virus vaccine (PIZV) candidate from ZIKV strain PRVABC59, isolated during the outbreak in 2015. The virus isolate was plaque purified, creating six sub-isolated virus stocks, two of which were selected to generate PIZV candidates for preclinical immunogenicity and efficacy evaluation in mice. The alum-adjuvanted PIZV candidates were highly immunogenic in both CD-1 and AG129 mice after a 2-dose immunization.
View Article and Find Full Text PDFRecombinant live-attenuated chimeric tetravalent dengue vaccine viruses, TDV-1, -2, -3, and -4, contain the premembrane and envelope genes of dengue virus serotypes 1-4 in the replicative background of the attenuated dengue virus type-2 (DENV-2) PDK-53 vaccine strain. Previous results have shown that these recombinant vaccine viruses demonstrate limited infection and dissemination in and are unlikely to be transmitted by the primary mosquito vector of DENVs. In this report, we expand this analysis by assessing vector competence of all four serotypes of the TDV virus in , the secondary mosquito vector of DENVs.
View Article and Find Full Text PDFHumanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.
View Article and Find Full Text PDF4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside analog that, unlike approved anti-human immunodeficiency virus type 1 (HIV-1) nucleoside reverse transcriptase inhibitors, has a 3'-OH and exhibits remarkable potency against wild-type and drug-resistant HIVs. EFdA triphosphate (EFdA-TP) is unique among nucleoside reverse transcriptase inhibitors because it inhibits HIV-1 reverse transcriptase (RT) with multiple mechanisms. (a) EFdA-TP can block RT as a translocation-defective RT inhibitor that dramatically slows DNA synthesis, acting as a de facto immediate chain terminator.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2014
Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs) are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activation pathways.
View Article and Find Full Text PDFBackground: The K65R substitution in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is the major resistance mutation selected in patients treated with first-line antiretroviral tenofovir disoproxil fumarate (TDF). 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), is the most potent nucleoside analog RT inhibitor (NRTI) that unlike all approved NRTIs retains a 3'-hydroxyl group and has remarkable potency against wild-type (WT) and drug-resistant HIVs. EFdA acts primarily as a chain terminator by blocking translocation following its incorporation into the nascent DNA chain.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2013
Drug combination studies of 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) with FDA-approved drugs were evaluated by two different methods, MacSynergy II and CalcuSyn. Most of the combinations, including the combination of the two adenosine analogs EFdA and tenofovir, were essentially additive, without substantial antagonism or synergism. The combination of EFdA and rilpivirine showed apparent synergism.
View Article and Find Full Text PDFPolymorphisms have poorly understood effects on drug susceptibility and may affect the outcome of HIV treatment. We have discovered that an HIV-1 reverse transcriptase (RT) polymorphism (RT(172K)) is present in clinical samples and in widely used laboratory strains (BH10), and it profoundly affects HIV-1 susceptibility to both nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) when combined with certain mutations. Polymorphism 172K significantly suppressed zidovudine resistance caused by excision (e.
View Article and Find Full Text PDFRNase H inhibitors (RNHIs) have gained attention as potential HIV-1 therapeutics. Although several RNHIs have been studied in the context of HIV-1 reverse transcriptase (RT) RNase H, there is no information on inhibitors that might affect the RNase H activity of other RTs. We performed biochemical, virological, crystallographic, and molecular modeling studies to compare the RNase H function and inhibition profiles of the gammaretroviral xenotropic murine leukemia virus-related virus (XMRV) and Moloney murine leukemia virus (MoMLV) RTs to those of HIV-1 RT.
View Article and Find Full Text PDFWe report key mechanistic differences between the reverse transcriptases (RT) of human immunodeficiency virus type-1 (HIV-1) and of xenotropic murine leukemia virus-related virus (XMRV), a gammaretrovirus that can infect human cells. Steady and pre-steady state kinetics demonstrated that XMRV RT is significantly less efficient in DNA synthesis and in unblocking chain-terminated primers. Surface plasmon resonance experiments showed that the gammaretroviral enzyme has a remarkably higher dissociation rate (k(off)) from DNA, which also results in lower processivity than HIV-1 RT.
View Article and Find Full Text PDFThe symbiotic interaction between legumes and soil bacteria (e.g., soybean [Glycine max L.
View Article and Find Full Text PDFA soybean homolog of the tomato FW2.2 gene, here named GmFWL1 (Glycine max FW2.2-like 1), was found to respond strongly to inoculation with the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum.
View Article and Find Full Text PDF