Publications by authors named "Yee Ping Yip"

Proper positioning of sympathetic preganglionic neurons(SPNs) in the spinal cord is regulated by reelin signaling. SPNs in reeler (which lacks reelin), and in mice deficient in components of the reelin signaling pathway (reelin receptors VldlR and ApoER2, the cytoplasmic adaptor protein Dab1, Src and Fyn of the Src-family of non-receptor protein tyrosine kinases, and CrkL) are located adjacent to the central canal instead of in the intermediolateral column (IML) of the spinal cord. Events downstream of CrkL in control of SPN migration are unclear.

View Article and Find Full Text PDF

The present study examined the effects of Reelin in the migration of sympathetic preganglionic neurons (SPN) in the spinal cord of the chick. SPN in the chick first migrate from the neuroepithelium to the ventrolateral spinal cord. They then undergo a secondary migration to cluster adjacent to the central canal, forming the column of Terni (CT).

View Article and Find Full Text PDF

Reelin, an extracellular matrix molecule, regulates neuronal positioning in the brain, brainstem, and spinal cord. Although Reelin was identified more than a decade ago, its function on neuronal migration is still poorly understood. Using a transgenic mouse that expressed reelin under the nestin promoter, we examined here the function of Reelin in control of sympathetic preganglionic neurons (SPN) migration in the spinal cord.

View Article and Find Full Text PDF

It has been shown that cyclin-dependent kinase 5 (Cdk5) is crucial for neuronal migration and survival in the brain. However, the role of Cdk5 in neuronal migration in the spinal cord has never been investigated. The present study is the first to show that Cdk5 affects the migration of different populations of neurons in the developing spinal cord.

View Article and Find Full Text PDF

The actions of Reelin in neuronal positioning in the developing cortex and cerebellum are relayed by Src-family kinase (SFK)-mediated phosphorylation of Dab1. Biochemical studies show that after phosphorylation Dab1 binds to an adaptor protein, CrkL. Whether CrkL is important for Reelin signaling in vivo is unknown, because crkl(-/-) embryos die before cortical development is complete.

View Article and Find Full Text PDF

Many studies suggest that during neuronal development the birthdate of a neuron appears to have significant consequences for its ultimate location and identity. Our past study shows that sympathetic preganglionic neurons (SPN) in mice lacking the reelin gene settle in abnormal positions in the spinal cord. In the present study we determined that birthdate is not a factor contributing to the abnormal position of SPN in reeler.

View Article and Find Full Text PDF

The Reelin signaling pathway in the brain involves the binding of Reelin to very-low-density lipoprotein receptors (VLDLR) and apolipoprotein E receptor 2 (ApoER2). After Reelin binds the lipoprotein receptors on migrating neurons, the intracellular adaptor protein Disabled-1 (Dab1) becomes phosphorylated, ultimately resulting in the proper positioning of cortical neurons. Previous work showed that Reelin also affects the positioning of sympathetic preganglionic neurons (SPN) in the spinal cord (Yip et al.

View Article and Find Full Text PDF

Our previous study showed that the migration of sympathetic preganglionic neurons (SPN) in the spinal cord is affected in the reeler mutant. The present study, using morphometric analysis to describe and compare the location of SPN at progressive developmental stages, provides detailed information on how SPN migrate in the presence or absence of the reelin gene. We found that the initial migration (prior to E11.

View Article and Find Full Text PDF