Integrin beta-6, a component of the heterodimeric adhesion receptor alpha-v/beta-6, is overexpressed in numerous solid tumors. Its expression has been shown by multiple investigators to be a negative prognostic indicator in diverse cancers including colorectal, non-small cell lung, gastric, and cervical. We developed SGN-B6A as an antibody-drug conjugate (ADC) directed to integrin beta-6 to deliver the clinically validated payload monomethyl auristatin E (MMAE) to cancer cells.
View Article and Find Full Text PDFNFAT activating protein with ITAM motif 1 (NFAM1) is an ITAM bearing-transmembrane receptor that has been reported to play a role in B cell signaling and development. We performed expression analysis of NFAM1 using publicly available gene expression data sets and found that NFAM1 expression is significantly induced in intestinal biopsies from Crohn's disease (CD) and ulcerative colitis (UC) patients. At the cellular level, we further observed high expression of NFAM1 in monocytes and neutrophils, and low expression in B and T cells.
View Article and Find Full Text PDFLeukemias bearing fusions of the AF10/MLLT10 gene are associated with poor prognosis, and therapies targeting these fusion proteins (FPs) are lacking. To understand mechanisms underlying AF10 fusion-mediated leukemogenesis, we generated inducible mouse models of acute myeloid leukemia (AML) driven by the most common AF10 FPs, PICALM/CALM-AF10 and KMT2A/MLL-AF10, and performed comprehensive characterization of the disease using transcriptomic, epigenomic, proteomic, and functional genomic approaches. Our studies provide a detailed map of gene networks and protein interactors associated with key AF10 fusions involved in leukemia.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
Coordination of growth and genomic stability is critical for normal cell physiology. Although the E3 ubiquitin ligase BRCA1 is a key player in maintenance of genomic stability, its role in growth signaling remains elusive. Here, we show that BRCA1 facilitates stabilization of YAP1 protein and turning "off" the Hippo pathway through ubiquitination of NF2.
View Article and Find Full Text PDFSmall cell lung cancer (SCLC) is the most deadly subtype of lung cancer due to its dismal prognosis. We have developed a lentiviral vector-mediated SCLC mouse model and have explored the role of both the NF-κB and CREB families of transcription factors in this model. Surprisingly, induction of NF-κB activity, which promotes tumor progression in many cancer types including non-small cell lung carcinoma (NSCLC), is dispensable in SCLC.
View Article and Find Full Text PDFLung adenocarcinoma, a major form of non-small cell lung cancer, is the leading cause of cancer deaths. The Cancer Genome Atlas analysis of lung adenocarcinoma has identified a large number of previously unknown copy number alterations and mutations, requiring experimental validation before use in therapeutics. Here, we describe an shRNA-mediated high-throughput approach to test a set of genes for their ability to function as tumor suppressors in the background of mutant KRas and WT Tp53.
View Article and Find Full Text PDFLung cancer is the most common human malignancy and leads to about one-third of all cancer-related deaths. Lung adenocarcinomas harboring KRAS mutations, in contrast to those with EGFR and EML4-ALK mutations, have not been successfully targeted. We describe a combination therapy for treating these malignancies with two agents: a lipophilic bisphosphonate and rapamycin.
View Article and Find Full Text PDFLung cancer is one of the leading cancer malignancies, with a five-year survival rate of only ~15%. We have developed a lentiviral-vector-mediated mouse model, which enables generation of non-small-cell lung cancer from less than 100 alveolar epithelial cells, and investigated the role of IKK2 and NF-κB in lung-cancer development. IKK2 depletion in tumour cells significantly attenuated tumour proliferation and significantly prolonged mouse survival.
View Article and Find Full Text PDFStudy of activity of cloned promoters in slow-growing Mycobacterium tuberculosis during long-term growth conditions in vitro or inside macrophages, requires a genome-integration proficient promoter probe vector, which can be stably maintained even without antibiotics, carrying a substrate-independent, easily scorable and highly sensitive reporter gene. In order to meet this requirement, we constructed pAKMN2, which contains mycobacterial codon-optimized gfp(m) (2+) gene, coding for GFP(m) (2+) of highest fluorescence reported till date, mycobacteriophage L5 attP-int sequence for genome integration, and a multiple cloning site. pAKMN2 showed stable integration and expression of GFP(m) (2+) from M.
View Article and Find Full Text PDFMycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase.
View Article and Find Full Text PDFMycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, infects one-third of the world's population. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). DCs are sentinels of the immune system and are important for eliciting both primary and secondary immune responses to pathogens.
View Article and Find Full Text PDFPathogenic mycobacteria have evolved unique strategies to survive within the hostile environment of macrophages. Modulation of key signaling cascades by NO, generated by the host during infection, assumes critical importance in overall cell-fate decisions. We show that NO is a critical factor in Mycobacterium bovis bacillus Calmette-Guérin-mediated Notch1 activation, as the generation of activated Notch1 or expression of Notch1 target genes matrix metalloproteinase-9 (MMP-9) or Hes1 was abrogated in macrophages derived from inducible NO synthase (iNOS) knockout (iNOS(-/-)), but not from wild-type, mice.
View Article and Find Full Text PDFInitiation of proinflammatory host immunity in response to infection represents as a key event in effective control and containment of the pathogen at the site of infection as well as in elicitation of robust immune memory responses. In the current investigation, we demonstrate that an integral cell wall antigen of the mycobacterial envelope, Phosphatidyl-myo-inositol dimannosides (PIM2) triggers Suppressor of cytokine signaling (SOCS) 3 expression in macrophages in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Data derived from signaling perturbations suggest the involvement of phosphoinositide-3 kinase (PI3K) and protein kinase C (PKC) signaling pathways during PIM2 induced SOCS3 expression.
View Article and Find Full Text PDFActivation of inflammatory immune responses during granuloma formation by the host upon infection of mycobacteria is one of the crucial steps that is often associated with tissue remodeling and breakdown of the extracellular matrix. In these complex processes, cyclooxygenase-2 (COX-2) plays a major role in chronic inflammation and matrix metalloproteinase-9 (MMP-9) significantly in tissue remodeling. In this study, we investigated the molecular mechanisms underlying Phosphatidyl-myo-inositol dimannosides (PIM2), an integral component of the mycobacterial envelope, triggered COX-2 and MMP-9 expression in macrophages.
View Article and Find Full Text PDFIn a multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) by Mycobacterium bovis bacillus Calmette-Guerin (BCG) may act as an important influencing factor for the effective host immunity. We here demonstrate that M. bovis BCG-triggered TLR2-dependent signaling leads to COX-2 and PGE2 expression in vitro in macrophages and in vivo in mice.
View Article and Find Full Text PDFMycobacterium tuberculosis survives and persists for prolonged periods within its host in an asymptomatic,latent state and can reactivate years later if the host's immune system weakens. The dormant bacilli synthesize and accumulate triacylglycerol, reputed to be an energy source during latency. Among the phospholipases, phospholipase C plays an important role in the pathogenesis.
View Article and Find Full Text PDFSuppressor of cytokine signaling (SOCS) 3 is a critical negative regulator of cytokine signaling and is induced by Mycobacterium bovis Bacille Calmette-Guérin (M. bovis BCG) in mouse macrophages. However, little is known about the early receptor proximal signaling mechanisms underlying mycobacteria-mediated induction of SOCS3.
View Article and Find Full Text PDFPE and PPE proteins appear to be important for virulence and immunopathogenicity in mycobacteria, yet the functions of the PE/PPE domains remain an enigma. To decipher the role of these domains, we have characterized the triacylglycerol (TAG) hydrolase LipY from Mycobacterium tuberculosis, which is the only known PE protein expressing an enzymatic activity. The overproduction of LipY in mycobacteria resulted in a significant reduction in the pool of TAGs, consistent with the lipase activity of this enzyme.
View Article and Find Full Text PDFThe multigene PE and PPE family represents about 10% of the genome of Mycobacterium tuberculosis. Here, we report that three members of the PE family, namely, Rv1169c, Rv0978c, and Rv1818c, elicit a strong, but differential, B-cell humoral response among different clinical categories of tuberculosis patients. The study population (n = 211) was comprised of different clinical groups of both adult and child patients: group 1 (n = 94) patients with pulmonary infection, group 2 (n = 30) patients with relapsed infection, group 3 (n = 31) patients with extrapulmonary infections, and clinically healthy donors (n = 56).
View Article and Find Full Text PDFEctopic expression of the Mycobacterium tuberculosis PE-family gene Rv1818c, triggers apoptosis in the mammalian Jurkat T cells, which is blocked by anti-apoptotic protein Bcl-2. Although complete overlap is not observed, a considerable proportion of cellular pools of ectopically expressed Rv1818c localizes to mitochondria. However, recombinant Rv1818c does not trigger release of cytochrome c from isolated mitochondria even though Rv1818c protein induced apoptosis of Jurkat T cells.
View Article and Find Full Text PDF