This study proposes a convolutional neural network (CNN) model using action potential (AP) shapes as input for proarrhythmic risk assessment, considering the hypothesis that machine-learning features automatically extracted from AP shapes contain more meaningful information than do manually extracted indicators. We used 28 drugs listed in the comprehensive in vitro proarrhythmia assay (CiPA), consisting of eight high-risk, eleven intermediate-risk, and nine low-risk torsadogenic drugs. We performed drug simulations to generate AP shapes using experimental drug data, obtaining 2000 AP shapes per drug.
View Article and Find Full Text PDFThe SCN5A mutations have been long associated with long QT variant 3 (LQT3). Recent experimental and computation studies have reported that mexiletine effectively treats LQT3 patients associated with the A1656D mutation. However, they have primarily focused on cellular level evaluations and have only looked at the effects of mexiletine on action potential duration (APD) or QT interval reduction.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
May 2022
Comprehensive in vitro Proarrhythmia Assay (CiPA) projects for assessing proarrhythmic drugs suggested a logistic regression model using qNet as the Torsades de Pointes (TdP) risk assessment biomarker, obtained from in silico simulation. However, using a single in silico feature, such as qNet, cannot reflect whole characteristics related to TdP in the entire action potential (AP) shape. Thus, this study proposed a deep convolutional neural network (CNN) model using differential action potential shapes to classify three proarrhythmic risk levels: high, intermediate, and low, considering both characteristics related to TdP not only in the depolarization phase but also the repolarization phase of AP shape.
View Article and Find Full Text PDFAs part of the Comprehensive Proarrhythmia Assay initiative, methodologies for predicting the occurrence of drug-induced torsade de pointes computer simulations have been developed and verified recently. However, their predictive performance still requires improvement. Herein, we propose an artificial neural networks (ANN) model that uses nine multiple input features, considering the action potential morphology, calcium transient morphology, and charge features to further improve the performance of drug toxicity evaluation.
View Article and Find Full Text PDF