Flex-activated mechanophores capable of releasing small molecules utilize bond bending to facilitate their mechanochemical activation without compromising the overall macromolecular architecture, which have great potential in various applications. However, the development of such mechanophores remains underexplored. Here we report a novel flex-activated mechanophore based on the 1,4-Diels-Alder (DA) adduct of 9,10-diphenylanthracene (DPA) with acetylenedicarboxylate (ADC).
View Article and Find Full Text PDFHydrogel-based flexible artificial tactility is equipped to intelligent robots to mimic human mechanosensory perception. However, it remains a great challenge for hydrogel sensors to maintain flexibility and sensory performances during cyclic loadings at high or low temperatures due to water loss or freezing. Here, a flexible robot tactility is developed with high robustness based on organohydrogel sensor arrays with negligent hysteresis and temperature tolerance.
View Article and Find Full Text PDFPassivating the electronic defects of metal halide perovskite is regarded as an effective way to improve the power conversion efficiency (PCE) of perovskite solar cells (PVSCs). Here, a series of dipeptide molecules with abundant ─C═O, ─O─ and ─NH functional groups as defects passivators for perovskite films are employed. These dipeptide molecules are utilized to treat the surface of prototype methyl ammonium lead iodide (MAPbI) films and the corresponding PVSCs exhibit enhanced photovoltaic performance and ambient stability, which can be ascribed to: 1) the ─C═O and ─O─ can interact with the undercoordinated Pb ions and the ─NH groups can form hydrogen bonds with the I ions, passivating the defects in perovskite film and reducing charge recombination in PVSCs; 2) the long alkyl chain of dipeptide molecules increases the hydrophobicity of the perovskite surface and thus enhance the stability of PVSCs.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2023
Molecular surface modification has been widely used to improve the stability and the power conversion efficiency of perovskite solar cells. First-principles studies have played a crucial role in the mechanism of surface modification. However, the design of surface modification molecules lacks theoretical guidelines.
View Article and Find Full Text PDFThe theoretical rational design of organic semiconductors faces an obstacle in that the performance of organic semiconductors depends very much on their stacking and local morphology (for example, phase domains), which involves numerous molecules. Simulation becomes computationally expensive as intermolecular electronic couplings have to be calculated from density functional theory. Therefore, developing fast and accurate methods for intermolecular electronic coupling estimation is essential.
View Article and Find Full Text PDFThe development of high-performance n-type semiconducting polymers remains a significant challenge. Reported here is the construction of a coplanar backbone intramolecular hydrogen bonds to dramatically enhance the performance of n-type polymeric mixed conductors operating in aqueous electrolyte. Specifically, glycolated naphthalene tetracarboxylicdiimide (gNDI) couples with vinylene and thiophene to give gNDI-V and gNDI-T, respectively.
View Article and Find Full Text PDFGenerally, a typical mechanochromophore produces color change through chemical transformation into one or two identical new chromophores/fluorophores under applied mechanical force. Herein, we introduce a novel mechanophore based on an anthracene-aminomaleimide Diels-Alder (DA) adduct featuring two distinct and latent fluorophores. This nonfluorescent mechanophore undergoes retro-DA reaction upon mechanochemical activation in solution and the solid state, generating the respective anthracene and aminomaleimide fragments simultaneously, both of which are highly emissive with different fluorescent colors.
View Article and Find Full Text PDFMechanochromic mechanophores have promising applications in stress sensing and damage detection. Here we report a simple mechanofluorochromic mechanophore based on aminothiomaleimide (ATM). Poly(methyl acrylate) containing this mechanophore (ATM-PMA) was synthesized by atom transfer radical polymerization (ATRP) using an ATM-derived difunctional initiator.
View Article and Find Full Text PDFSince the seminal works on the application of density functional theory and the computational hydrogen electrode to electrochemical CO reduction (eCOR) and hydrogen evolution (HER), the modeling of both reactions has quickly evolved for the last two decades. Formulation of thermodynamic and kinetic linear scaling relationships for key intermediates on crystalline materials have led to the definition of activity volcano plots, overpotential diagrams, and full exploitation of these theoretical outcomes at laboratory scale. However, recent studies hint at the role of morphological changes and short-lived intermediates in ruling the catalytic performance under operating conditions, further raising the bar for the modeling of electrocatalytic systems.
View Article and Find Full Text PDFAll-inorganic CsPbIBr perovskite solar cells (PSCs) have recently gained growing attention as a promising template to solve the thermal instability of organic-inorganic PSCs. However, the relatively low device efficiency hinders its further development. Herein, highly efficient and stable CsPb Sn IBr compositional perovskite-based inorganic PSCs are fabricated by introducing appropriate amount of multifunctional zinc oxalate (ZnOX).
View Article and Find Full Text PDFLow-work-function (WF) metals (including silver (Ag), aluminum (Al), and copper (Cu)) used as external cathodes in inverted perovskite solar cells (PSCs) encounter oxidation caused by air exposure and halogen-diffusion-induced corrosion, which threaten the long-term stability of the device. The cathode interlayer (CIL) has shown promise in reducing the metal WF and thus boosting the device power conversion efficiency (PCE). However, it remains a challenge for current CIL materials to enable high-WF metals (e.
View Article and Find Full Text PDFConspectusBecause of their low-temperature processing properties and inherent mechanical flexibility, semiconducting materials are promising candidates for enabling flexible displays, renewable energy, biological sensors, and healthcare. Progress has been made in materials performance by developing judicious materials design strategies. For example, improvements in electron transport have required new electron-deficient aromatics.
View Article and Find Full Text PDFRapid and accurate diagnosis of multidrug-resistant tuberculosis (MDR-TB) is important for timely and appropriate therapy. In this study, a rapid and easy-to-perform molecular test that integrated polymerase chain reaction (PCR) amplification and a specific 96-well microplate hybridization assay, called PCR-ELISA (enzyme-linked immunosorbent assay), were developed for detection of mutations in rpoB, katG, and inhA genes responsible for rifampin (RIF) and isoniazid (INH) resistance and prediction of drug susceptibility in Mycobacterium tuberculosis clinical isolates. We evaluated the utility of this method by using 32 multidrug-resistent (MDR) isolates and 22 susceptible isolates; subsequently, we compared the results with data obtained by conventional drug susceptibility testing and DNA sequencing.
View Article and Find Full Text PDFOrganic cocrystals are formed the self-assembly of donor and acceptor constituents, which are mixed together through weak noncovalent interactions. Although they reveal unique physical features, their synthesis still faces major drawbacks for the introduction of more potential semiconductors. Herein, we first report soluble pentacene derivative (TMTES-P) based complexes, with suitable alkyl terminal groups, enabling the location of 4,8-bis(dicyanomethylene)-4,8-dihydrobenzo[1,2-:4,5-']-dithiophene (DTTCNQ) in the crystal lattice, thereby allowing the cocrystallization of a binary system on demand.
View Article and Find Full Text PDFHybrid organic-inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge-carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin-orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high-performance optoelectronics and spintronics. Here, 3D hybrid organic-inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated.
View Article and Find Full Text PDFBoth conductivity and mobility are essential to charge transfer by carrier transport layers (CTLs) in perovskite solar cells (PSCs). The defects derived from generally used ionic doping method lead to the degradation of carrier mobility and parasite recombinations. In this work, a novel molecular doping of NiO hole transport layer (HTL) is realized successfully by 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ).
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2018
A new crystal phase of a naphthalenediimide derivative (α-DPNDI) has been prepared via a facial polymer-assisted method. The stacking pattern of DPNDI can be tailored from the known one-dimensional (1D) ribbon (β phase) to a novel two-dimensional (2D) plate (α phase) through the assistance from polymers. We believe that the presence of polymers during crystal growth is likely to weaken the direct π-π interactions and favor side-to-side C-H-π contacts.
View Article and Find Full Text PDFBecause organic donor/acceptor blending systems play critical roles in ambipolar transistors, photovoltaics, and light-emitting transistors, it is highly desirable to precisely tailor the stacking of cocrystals toward different intrinsic structures and physical properties. Here, we demonstrated that the structure-stacking modes and electron-transport behaviors of coronene-F4TCNQ cocrystals (1:1) can be tuned through the solvent accommodation. Our results clearly show that the solvent accommodation not only enlarges the inner mixed packing (.
View Article and Find Full Text PDFCn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2016
Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides.
View Article and Find Full Text PDFBoth solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor.
View Article and Find Full Text PDFPhotovoltaic cells with absorbing layers of certain perovskites have power conversion efficiencies up to 20%. Among these materials, CH3NH3PbI3 is widely used. Here we use density-functional theory to calculate the energies and rotational energy barriers of a methylammonium ion in the α or β phase of CH3NH3PbI3 with differently oriented neighbouring methylammonium ions.
View Article and Find Full Text PDFDoping a graphene sheet with different atoms is a promising method for tuning its electronic properties. We report a first-principle investigation on the electronic properties of N, B, S, Al, Si or P doped graphene. It is revealed that the doped graphene can show an interesting physical regularity, which can be described by a simple 3N rule: a doped graphene has a zero gap or a neglectable gap at the Dirac point when its primitive cell is 3N × 3N (N is an integer), otherwise there is a gap tunable by the dopant concentration.
View Article and Find Full Text PDFPolyaniline (PANI) nanofiber is grafted onto graphene to obtain a novel graphene-polyaniline (GP) hybrid. Graphene is activated using SOCl2 and reacts with PANI to form an amide group that intimately connects graphene and PANI. The existence of the amide group and its anchoring effect in the GP hybrid are confirmed and characterized by SEM, TEM, FT-IR, Raman, XPS and quantum chemistry analyses.
View Article and Find Full Text PDF