Creating artificial synapses that can interact with biological neural systems is critical for developing advanced intelligent systems. However, there are still many difficulties, including device morphology and fluid selection. Based on Micro-Electro-Mechanical System technologies, we utilized two immiscible electrolytes to form a liquid/liquid interface at the tip of a funnel nanochannel, effectively enabling a wafer-level fabrication, interactions between multiple information carriers, and electron-to-chemical signal transitions.
View Article and Find Full Text PDFVancomycin (VAN), a glycopeptide antibiotic, is the preferred therapeutic agent for treating Gram-positive bacteria. Rapid and precise quantification of VAN levels in cerebrospinal fluid (CSF) and plasma is crucial for optimized drug administration, particularly among elderly patients. Herein, we introduce a novel clinical test strip utilizing colloidal gold competitive immunoassay technology for the expedient detection of VAN.
View Article and Find Full Text PDFParylene C has been widely used in the fields of microelectromechanical systems (MEMS) and electronic device encapsulation because of its unique properties, such as biocompatibility and conformal coverage. However, its poor adhesion and low thermal stability limit its use in a wider range of applications. This study proposes a novel method for improving the thermal stability and enhancing the adhesion between Parylene and Si by copolymerizing Parylene C with Parylene F.
View Article and Find Full Text PDFInterpretation of cell-cell and cell-microenvironment interactions is critical for both advancing knowledge of basic biology and promoting applications of regenerative medicine. Cell patterning has been widely investigated in previous studies. However, the reported methods cannot simultaneously realize precise control of cell alignment and adhesion/spreading with a high efficiency at a high throughput.
View Article and Find Full Text PDFIn recent decades, the ionic current rectification (ICR) property of asymmetric nanochannels has been widely explored in applications of energy conversion, gas separation, water purification and bioanalysis/sensors. How to fabricate nanofluidic devices with a high ICR characteristic remains of critical importance to the development of nanofluidics. Herein, we fabricated an asymmetric MOFs/PAA hybrid via in situ synthesis of a zeolitic imidazole framework (ZIF-90) on porous anodic alumina (PAA) nanochannels.
View Article and Find Full Text PDF