Background: Ferroptosis has been proven to contribute to the progression of myocardial ischemia/reperfusion (I/R) injury and can be inhibited or promoted by ATF3. Short-chain fatty acids (SCFAs) have shown benefits in various cardiovascular diseases with anti-inflammatory and antioxidant effects. However, the impact of SCFAs on ferroptosis in ischemic-stimulated cardiomyocytes remains unknown.
View Article and Find Full Text PDFValvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.
View Article and Find Full Text PDFThe existing strategies for myocardial infarction therapy mainly focus on reinstating myocardial blood supply, often disregarding the intrinsic and intricate microenvironment created by elevated levels of reactive oxygen species (ROS) that accompanies myocardial infarction. This microenvironment entails cardiomyocytes apoptosis, substantial vascular cell death, excessive inflammatory infiltration and fibrosis. In such situation, the present study introduces a zinc-based nanozyme injectable multifunctional hydrogel, crafted from ZIF-8, to counteract ROS effects after myocardial infarction.
View Article and Find Full Text PDFMyocardial infarction (MI) is a major cause of mortality worldwide. The major limitation of regenerative therapy for MI is poor cardiac retention of therapeutics, which results from an inefficient vascular network and poor targeting ability. In this study, a two-layer intrinsically magnetic epicardial patch (MagPatch) prepared by 3D printing with biocompatible materials like poly (glycerol sebacate) (PGS) is designed, poly (ε-caprolactone) (PCL), and NdFeB.
View Article and Find Full Text PDFA challenge in treating cardiac injury is the low heart-specificity of the drugs. Nanostructured lipid carriers (NLCs) are a relatively new format of lipid nanoparticles which have been used to deliver RNA and drugs. However, lipid nanoparticles exhibit higher affinity to the liver than the heart.
View Article and Find Full Text PDFSubstrate stiffness has been indicated as a primary determinant for stem cell fate, being capable of influencing motility, proliferation, and differentiation. Although the effects of stiffness on cardiac differentiation of human-induced pluripotent stem cells (h-iPSCs) have been reported, whether stiffness of polydimethylsiloxane-based substrates could enhance differentiation of h-iPSCs toward heart valve endothelial cells lineage (VECs) or not remains unknown. Herein, we modulated the substrate stiffness to evaluate its effect on the differentiation of h-iPSCs into valve endothelial-like cells (h-iVECs) in vitro and determine the suitable stiffness.
View Article and Find Full Text PDF