Publications by authors named "Yeawon Kim"

Purpose: Colorectal cancer (CRC) is the most frequent cancer with limited therapeutic achievements. Recently, adoptive cellular immunotherapy has been developed as an antitumor therapy. However, its efficacy has not been tested in CRC.

View Article and Find Full Text PDF

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury.

View Article and Find Full Text PDF

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide.

View Article and Find Full Text PDF

Albuminuria is a hallmark of glomerular disease of various etiologies. It is not only a symptom of glomerular disease but also a cause leading to glomerulosclerosis, interstitial fibrosis, and eventually, a decline in kidney function. The molecular mechanism underlying albuminuria-induced kidney injury remains poorly defined.

View Article and Find Full Text PDF

Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin ( is the most common nonpolycystic genetic kidney disease, but it remains unrecognized due to its clinical heterogeneity and lack of screening test. Moreover, the fact that the clinical feature is a poor predictor of disease outcome further highlights the need for the development of mechanistic biomarkers in ADTKD. However, low abundant urinary proteins secreted by thick ascending limb cells, where UMOD is synthesized, have posed a challenge for the detection of biomarkers in ADTKD-.

View Article and Find Full Text PDF

-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) plays a major role in development of biofilms, which contribute to rise in infections and biofouling in water-related industries. Interference in QS, called quorum quenching (QQ), has recieved a lot of attention in recent years. spp.

View Article and Find Full Text PDF

Emerging evidence has established primary nephrotic syndrome (NS), including focal segmental glomerulosclerosis (FSGS), as a primary podocytopathy. Despite the underlying importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of NS, no treatment currently targets the podocyte ER. In our monogenic podocyte ER stress-induced NS/FSGS mouse model, the podocyte type 2 ryanodine receptor (RyR2)/calcium release channel on the ER was phosphorylated, resulting in ER calcium leak and cytosolic calcium elevation.

View Article and Find Full Text PDF

The advent of next-generation sequencing (NGS) in recent years has led to a rapid discovery of novel or rare genetic variants in human kidney cell genes, which is transforming the risk assessment, diagnosis, and treatment of kidney disease. Mutations may lead to protein misfolding, disruption of protein trafficking, and endoplasmic reticulum (ER) retention. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and unfolded protein response.

View Article and Find Full Text PDF

Bacterial quorum quenching (QQ) by means of degrading signaling molecules has been applied to antibiofouling strategies in a membrane bioreactor (MBR) for wastewater treatment. However, the target signaling molecules have been limited to N-acyl homoserine lactones participating in intraspecies quorum sensing. Here, an approach to disrupting autoinducer-2 (AI-2) signaling molecules participating in interspecies quorum sensing was pursued as a next-generation antibiofouling strategy in an MBR for wastewater treatment.

View Article and Find Full Text PDF

ER stress has emerged as a signaling platform underlying the pathogenesis of various kidney diseases. Thus, there is an urgent need to develop ER stress biomarkers in the incipient stages of ER stress-mediated kidney disease, when a kidney biopsy is not yet clinically indicated, for early therapeutic intervention. Cysteine-rich with EGF-like domains 2 (CRELD2) is a newly identified protein that is induced and secreted under ER stress.

View Article and Find Full Text PDF

Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly identified 18-kDa soluble protein, localizes to the luminal endoplasmic reticulum (ER), whose stress can stimulate MANF expression and secretion. In Drosophila and zebrafish, MANF regulates dopaminergic neuron development. In contrast, in mice, MANF deficiency leads to diabetes and activation of the unfolded protein response.

View Article and Find Full Text PDF
Article Synopsis
  • * Farnesol, produced by Candida albicans, can help reduce biofouling in MBRs by interfering with QS, leading to significant decreases in membrane pressure and energy use.
  • * Implementing farnesol-producing fungi in MBRs could achieve energy savings of about 40% and may be adaptable for large-scale wastewater treatment facilities economically.
View Article and Find Full Text PDF

Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress and disrupted proteostasis contribute to the pathogenesis of a variety of glomerular and tubular diseases. Thus, it is imperative to develop noninvasive biomarkers for detecting ER stress in podocytes or tubular cells in the incipient stage of disease, when a kidney biopsy is not yet clinically indicated. Mesencephalic astrocyte-derived neurotrophic factor (MANF) localizes to the ER lumen and is secreted in response to ER stress in several cell types.

View Article and Find Full Text PDF

Thyroid hormone signaling has long been implicated in mammalian testicular function, affecting steroidogenesis in testicular Leydig cells. However, its molecular mechanism is not well understood. Here, we investigated the molecular action of thyroid hormone receptor-α (TRα) on mouse testicular steroidogenesis.

View Article and Find Full Text PDF

DLG1 (discs-large homolog 1) and CASK (calcium/calmodulin-dependent serine protein kinase) interact at membrane-cytoskeleton interfaces and function as scaffolding proteins that link signaling molecules, receptors, and other scaffolding proteins at intercellular and synaptic junctions. Dlg1-null mice exhibit hydronephrosis, hydroureter, and occasionally hypoplastic kidneys, whereas Cask-null mice do not. To investigate whether DLG1 and CASK cooperate in the developing urogenital system, we generated mice deficient in both DLG1 and CASK either 1) globally, 2) in metanephric mesenchyme, or 3) in nephron progenitors.

View Article and Find Full Text PDF

Endocrine disruptors (EDs) affect the function of animal reproductive systems. Recently, 2,2',4,4'-tetrahydroxybenzophenone (BP2), which is a component of UV protection products, was found to be an ED that interferes with the thyroid hormone (TH) axis. However, BP2 activity in the testis has not been well addressed.

View Article and Find Full Text PDF

ARR19 (androgen receptor corepressor-19 kDa), a leucine-rich protein whose expression is down-regulated by luteinizing hormone and cAMP, is differentially expressed during the development of Leydig cells and inhibits testicular steroidogenesis by reducing the expression of steroidogenic enzymes. However, the molecular events behind the suppression of testicular steroidogenesis are unknown. In the present study, we demonstrate that ARR19 inhibits the transactivation of orphan nuclear receptor Nur77, which is one of the major transcription factors that regulate the expression of steroidogenic enzyme genes in Leydig cells.

View Article and Find Full Text PDF