Background: The ligamentum flavum (LF) degeneration is a critical factor in spinal stenosis, leading to nerve compression and pain. Even with new treatment options becoming available, it is vital to have a better understanding of LF degeneration to ensure the effectiveness of these treatments.
Objective: This study aimed to provide insight into LF degeneration by examining the connections between various aspects of LF degeneration, including histology, microstructure, chemical composition, and biomechanics.
Low-dimensional materials, such as MoS, hold promise for use in a host of emerging applications, including flexible, wearable sensors due to their unique electrical, thermal, optical, mechanical, and tribological properties. The implementation of such devices requires an understanding of adhesive phenomena at the interfaces between these materials. Here, we describe combined nanoscale transmission electron microscopy (TEM)/atomic force microscopy (AFM) experiments and simulations measuring the work of adhesion () between self-mated contacts of ultrathin nominally amorphous and nanocrystalline MoS films deposited on Si scanning probe tips.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
February 2023
A tissue preparation method will inevitably alter the tissue content. This study aims to evaluate how different common sample preparation methods will affect the tissue morphology, biomechanical properties, and chemical composition of samples. The study focuses on intervertebral disc (IVD) tissue; however, it can be applied to other soft tissues.
View Article and Find Full Text PDFThe teeth of limbed vertebrates used for capturing and processing food are composed of mineralized dentine covered by hypermineralized enamel, the hardest material organisms produce. Here, we combine scanning probe microscopy, depth sensing, and spectromicroscopy (SR-FTIR) to characterize the surface ultrastructural topography, nanotribology, and chemical compositions of mammal species with different dietary habits, including omnivorous humans. Our synergistic approach shows that enamel with greater surface hardness or thickness exhibited a more salient gradient feature from the tooth surface to the dentino-enamel junction (DEJ) one that corresponds to the phosphate-to-amide ratio.
View Article and Find Full Text PDFIntervertebral disc degeneration (IDD) is closely related to changes in the intervertebral disc (IVD) composition and the resulting viscoelastic properties. IDD is a severe condition because it decreases the disc's ability to resist mechanical loads. Our research aims to understand IDD at the cellular level, specifically the changes in the viscoelastic properties of the nucleus pulposus (NP), which are poorly understood.
View Article and Find Full Text PDFVariations in the implant thread shape and occlusal load behavior may result in significant changes in the biological and mechanical properties of dental implants and surrounding bone tissue. Most previous studies consider a single implant thread design, an isotropic bone structure, and a static occlusal load. However, the effects of different thread designs, bone material properties, and loading conditions are important concerns in clinical practice.
View Article and Find Full Text PDFHerein, we aim to develop a facile method for the fabrication of mechanical metamaterials from templated polymerization of thermosets including phenolic and epoxy resins using self-assembled block copolymer, polystyrene-polydimethylsiloxane with tripod network (gyroid), and tetrapod network (diamond) structures, as templates. Nanoindentation studies on the nanonetwork thermosets fabricated reveal enhanced energy dissipation from intrinsic brittle thermosets due to the deliberate structuring; the calculated energy dissipation for gyroid phenolic resins is 0.23 nJ whereas the one with diamond structure gives a value of 0.
View Article and Find Full Text PDFMaterials (Basel)
December 2020
An experimental investigation was performed on the coefficients of friction (COFs) and wear properties of pure water and oil-in-water (O/W) working fluids containing carbon nanocapsules (CNCs) with concentrations ranging from 0 to 1.0 wt.%.
View Article and Find Full Text PDFThe elastic range in loading-unloading processes is often reduced with a Bauschinger effect. This material property may have a high impact on residual stresses and, as a result, on the performance of autofrettaged cylinders under service conditions. The objective of the present paper is to demonstrate this impact using a material model that accounts for the response of typical high-strength steel.
View Article and Find Full Text PDFVibrating micro- and nanomechanical mass sensors are capable of quantitatively determining attached mass from only the first three (two) measured cantilever (suspended) resonant frequencies. However, in aqueous solutions that are relevant to most biological systems, the mass determination is challenging because the quality factor (Q-factor) due to fluid damping decreases and, as a result, usually just the fundamental resonant frequencies can be correctly identified. Moreover, for higher modes the resonance coupling, noise, and internal damping have been proven to strongly affect the measured resonances and, correspondingly, the accuracy of estimated masses.
View Article and Find Full Text PDFAn experimental investigation is performed into the tribological properties of mineral oil lubricants containing carbon nanocapsules (CNCs) additives with various concentrations (wt.%). Friction characteristics and wear behaviors at contact interfaces are examined by the block-on-ring tests, high-resolution transmission electron microscopy (HRTEM), and mapping (MAP) analysis.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
May 2011
The AFM combined nanoindentation was performed to observe the ultrastructure of enamel rod from various section plans and positions while probing their mechanical and tribological properties of the area. The nanohardness and the elastic modulus of the head region of the enamel rods are significantly higher than that of the tail region and the axial-sectional plane. Both nanohardness and elastic modulus gradually decrease from enamel surface toward dentino-enamel junction.
View Article and Find Full Text PDFMany researchers have reported that the robust adhesion that enables geckos to move quickly and securely across a range of vertical and horizontal surfaces is provided by the hierarchical structure of their feet (i.e. lamellae, setae, spatulae, etc.
View Article and Find Full Text PDFIn this study, we used metal organic chemical vapor deposition to form gallium nitride (GaN) epilayers on c- and a-axis sapphire substrates and then used the nanoscratch technique and atomic force microscopy (AFM) to determine the nanotribological behavior and deformation characteristics of the GaN epilayers, respectively. The AFM morphological studies revealed that pile-up phenomena occurred on both sides of the scratches formed on the GaN epilayers. It is suggested that cracking dominates in the case of GaN epilayers while ploughing during the process of scratching; the appearances of the scratched surfaces were significantly different for the GaN epilayers on the c- and a-axis sapphire substrates.
View Article and Find Full Text PDFTooth enamel is a hybrid organic-inorganic bionanocomposite comprised predominantly of enamel rods. Understanding the effects of anti-caries treatment on the biomechanical properties of these rods is essential in developing effective caries prevention strategies. Calcium fluoride-like deposits play an important role in caries prevention and their nanotribological properties have a direct effect upon their long-term effectiveness.
View Article and Find Full Text PDFThis paper utilizes molecular-dynamics simulations to investigate the mechanical characteristics of a suspended (10, 10) single-walled carbon nanotube (SWCNT) during atomic force microscopy (AFM) nanoindentation at different temperatures. Spontaneous topological transition of the Stone-Wales (SW) defects is clearly observed in the indentation process. The present results indicate that under AFM-bending deformation, the mechanical properties of the SWCNT, e.
View Article and Find Full Text PDF