Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) proposed an exotic pairing mechanism in which magnetism is accommodated by the formation of pairs with finite momentum.
View Article and Find Full Text PDFWe report the observation of pairing in a gas of atomic fermions with unequal numbers of two components. Beyond a critical polarization, the gas separates into a phase that is consistent with a superfluid paired core surrounded by a shell of normal unpaired fermions. The critical polarization diminishes with decreasing attractive interaction.
View Article and Find Full Text PDFRotational analyses have been carried out at high resolution for the 000-000 and 000-100 bands of the A (1)Pi(u)-X (1)Sigma(g) (+) transition of supersonic jet-cooled C(3). Two different spectra have been recorded for each band, using time gatings of 20-150 and 800-2300 ns. At the shorter time delay the spectra show only the lines observed by many previous workers.
View Article and Find Full Text PDF