Publications by authors named "Yean J Lim"

Microfluidics in vitro assays recapitulate a blood vessel microenvironment using surface-immobilized agonists under biofluidic flows. However, these assays do not quantify intrathrombus mass and activities of adhesive platelets at the agonist margin and use fluorescence labeling, therefore limiting clinical translation potential. Here, we describe a label-free multimodal quantitative imaging flow assay that combines rotating optical coherent scattering microscopy and quantitative phase microscopy.

View Article and Find Full Text PDF

Intensity shot noise in digital holograms distorts the quality of the phase images after phase retrieval, limiting the usefulness of quantitative phase microscopy (QPM) systems in long term live cell imaging. In this paper, we devise a hologram-to-hologram neural network, Holo-UNet, that restores high quality digital holograms under high shot noise conditions (sub-mW/cm intensities) at high acquisition rates (sub-milliseconds). In comparison to current phase recovery methods, Holo-UNet denoises the recorded hologram, and so prevents shot noise from propagating through the phase retrieval step that in turn adversely affects phase and intensity images.

View Article and Find Full Text PDF

Moldable, transparent polydimethylsiloxane (PDMS) elastomer microdevices enable a broad range of complex studies of three-dimensional cellular networks in their microenvironment in vitro. However, the uneven distribution of refractive index change, external to PDMS devices and internally in the sample chamber, creates a significant optical path difference (OPD) that distorts the light sheet beam and so restricts diffraction limited performance. We experimentally showed that an OPD of 120 μm results in the broadening of the lateral point spread function by over 4-fold.

View Article and Find Full Text PDF
Article Synopsis
  • T cell activation starts with the binding of a ligand to the T cell receptor (TCR), which triggers intracellular phosphorylation in the TCR-CD3 complex.
  • Researchers developed an optogenetic tool that controls the clustering of the ζ-chain, demonstrating that this clustering alone can initiate T cell activation processes, including various phosphorylation events and calcium flux.
  • The study found that in COS-7 cells, only the presence of Lck was needed for ζ-chain phosphorylation when clustering occurs, highlighting the importance of receptor clustering in TCR signaling.
View Article and Find Full Text PDF

Removal of complex aberrations at millisecond time scales over millimeters in distance in multiphoton laser scanning microscopy limits the total spatiotemporal imaging throughput for deep tissue imaging. Using a single low resolution deformable mirror and time multiplexing (TM) adaptive optics, we demonstrate video rate aberration correction (5 ms update rate for a single wavefront mask) for a complex heterogeneous distribution of refractive index differences through a depth of up to 1.1 mm and an extended imaging FOV of up to 0.

View Article and Find Full Text PDF

Platelets are small anucleate cells that are essential for many biological processes including hemostasis, thrombosis, inflammation, innate immunity, tumor metastasis, and wound healing. Platelets circulate in the blood and in order to perform all of their biological roles, platelets must be able to arrest their movement at an appropriate site and time. Our knowledge of how platelets achieve this has expanded as our ability to visualize and quantify discreet platelet events has improved.

View Article and Find Full Text PDF

The heme enzyme indoleamine 2,3-dioxygenase-1 (IDO1) catalyzes the first reaction of l-tryptophan oxidation along the kynurenine pathway. IDO1 is a central immunoregulatory enzyme with important implications for inflammation, infectious disease, autoimmune disorders, and cancer. Here we demonstrate that IDO1 is a mammalian nitrite reductase capable of chemically reducing nitrite to nitric oxide (NO) under hypoxia.

View Article and Find Full Text PDF

The heme enzyme indoleamine 2,3-dioxygenase (IDO) is a key regulator of immune responses through catalyzing l-tryptophan (l-Trp) oxidation. Here, we show that hydrogen peroxide (H(2)O(2)) activates the peroxidase function of IDO to induce protein oxidation and inhibit dioxygenase activity. Exposure of IDO-expressing cells or recombinant human IDO (rIDO) to H(2)O(2) inhibited dioxygenase activity in a manner abrogated by l-Trp.

View Article and Find Full Text PDF

Background And Aims: Biliary disease is one of the most common causes of acute pancreatitis in adults; however, this cause and outcome in children have rarely been described in the literature. Therefore, the present study was conducted to evaluate the role of biliary disease as a cause of acute pancreatitis in children.

Methods: The present study included 56 children with acute pancreatitis, of which 16 (29%) cases were associated with biliary disease.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4f039fvq38jltk0n1k870dmj15pi4ojp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once