De novo mutations in CHD8 are strongly associated with autism spectrum disorder, but the basic biology of CHD8 remains poorly understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural-specific genes by regulating the expression of PRC2 complex components.
View Article and Find Full Text PDFComplexins are synaptic SNARE complex-binding proteins that cooperate with synaptotagmins in activating Ca(2+)-stimulated, synaptotagmin-dependent synaptic vesicle exocytosis and in clamping spontaneous, synaptotagmin-independent synaptic vesicle exocytosis. Here, we show that complexin sequences are conserved in some non-metazoan unicellular organisms and in all metazoans, suggesting that complexins are a universal feature of metazoans that predate metazoan evolution. We show that complexin from Nematostella vectensis, a cnidarian sea anemone far separated from mammals in metazoan evolution, functionally replaces mouse complexins in activating Ca(2+)-triggered exocytosis, but is unable to clamp spontaneous exocytosis.
View Article and Find Full Text PDFSynaptotagmin-12 (Syt12) is an abundant synaptic vesicle protein that--different from other synaptic vesicle-associated synaptotagmins--does not bind Ca(2+). Syt12 is phosphorylated by cAMP-dependent protein kinase-A at serine-97 in an activity-dependent manner, suggesting a function for Syt12 in cAMP-dependent synaptic plasticity. To test this hypothesis, we here generated (1) Syt12 knock-out mice and (2) Syt12 knockin mice carrying a single amino-acid substitution [the serine-97-to-alanine- (S97A)-substitution].
View Article and Find Full Text PDFComplexins are small soluble proteins that bind to assembling SNARE complexes during synaptic vesicle exocytosis, which in turn mediates neurotransmitter release. Complexins are required for clamping of spontaneous "mini " release and for the priming and synaptotagmin-dependent Ca(2+) triggering of evoked release. Mammalian genomes encode four complexins that are composed of an N-terminal unstructured sequence that activates synaptic exocytosis, an accessory α-helix that clamps exocytosis, an essential central α-helix that binds to assembling SNARE complexes and is required for all of its functions, and a long, apparently unstructured C-terminal sequence whose function remains unclear.
View Article and Find Full Text PDFLong-term potentiation (LTP) is a compelling synaptic correlate of learning and memory. LTP induction requires NMDA receptor (NMDAR) activation, which triggers SNARE-dependent exocytosis of AMPA receptors (AMPARs). However, the molecular mechanisms mediating AMPAR exocytosis induced by NMDAR activation remain largely unknown.
View Article and Find Full Text PDFComplexin activates and clamps neurotransmitter release; impairing complexin function decreases synchronous, but increases spontaneous and asynchronous synaptic vesicle exocytosis. Here, we show that complexin-different from the Ca(2+) sensor synaptotagmin-1-activates synchronous exocytosis by promoting synaptic vesicle priming, but clamps spontaneous and asynchronous exocytosis-similar to synaptotagmin-1-by blocking a secondary Ca(2+) sensor. Activation and clamping functions of complexin depend on distinct, autonomously acting sequences, namely its N-terminal region and accessory α helix, respectively.
View Article and Find Full Text PDF