Sugarcane smut is a major disease affecting the yield and quality of sugarcane, and its early detection is crucial for the healthy development of sugarcane industry. In this work, a dual-modal biosensing platform is designed based on Au-V-MOF and 3D DNA walker for highly sensitive and precise detection of the sugarcane smut pathogen. This detection system utilizes the catalytic properties of biocatalysts and the precise cleavage of DNAzymes, along with 3D DNA walker nanotechnology and a designed "walking track", to achieve amplified detection signals and accurate target recognition.
View Article and Find Full Text PDFThis paper presents a self-powered biosensing platform based on graphdiyne@Au (2D GDY@Au) nanoparticles and rolling circle-hybridization chain (RC-HC) dual linear cascade amplification technology, which significantly enhances target recognition and signal amplification efficiency for miRNA-141. Specifically, the target on bioanode outputs a large amount of single-stranded DNA (T1) through the strand displacement amplification (SDA) mechanism. This efficient target recycling process triggers RC-HC dual linear cascade reaction.
View Article and Find Full Text PDFClustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated Proteins (CRISPR/Cas) system can accurately identify and cleave target DNA sequences, while the effective combination of DNA nanomatrix and entropy-driven self-assembled enzymes can significantly enhance the sensitivity, stability, and diversified functionality of sensors through highly ordered molecular arrangement and spontaneous efficient assembly processes. Herein, a carbon-encapsulated MoS hollow nanorod (C-MoS) with excellent conductivity and multiple active sites is used to construct bioanode of biofuel cell by integrating it with an entropy-driven self-assembled enzyme-DNA nanomatrix cascade DNAzyme-CRISPR/Cas system. When thrombin binds aptamer, it exposes the trigger strand on the anode, initiating chain displacement.
View Article and Find Full Text PDFAmmonia (NH) synthesis via the nitrate reduction reaction (NORR) offers a competitive strategy for nitrogen cycling and carbon neutrality; however, this is hindered by the poor NORR performance under high current density. Herein, it is shown that boron-doped TiCT MXene nanosheets can highly efficiently catalyze the conversion of NORR-to-NH at ambient conditions, showing a maximal NH Faradic efficiency of 91% with a peak yield rate of 26.2 mgh mg , and robust durability over ten consecutive cycles, all of them are comparable to the best-reported results and exceed those of pristine TiCT MXene.
View Article and Find Full Text PDFIn this work, a platinum-nickel based nanozyme is prepared and used as a coreaction accelerator in the luminol-HO electrochemiluminescence (ECL) system to construct an ECL biosensor for dimethyl phthalate (DMP) detection. The PtNi/NC nanozyme possesses dispersed metal active sites, and the synergistic effect of Pt and Ni endows it with excellent catalytic performance, which effectively converts HO into more superoxide anions, and then significantly enhances the ECL intensity of the luminol system. The ECL mechanism is investigated by combining cyclic voltammetry and ECL with different types of free radical scavengers.
View Article and Find Full Text PDFBased on CRISPR/Cas12a triggered ordered concatemeric DNA probes, a "on/off" self-powered biosensor is developed to achieve highly sensitive detection of thalassemia gene CD142 through open-circuit potential-assisted visual signal output. The ingeniously constructed glucose oxidase (GOD)-functionalized ordered concatemeric DNA probe structure can significantly amplify signal output, while the coupled CRISPR/Cas12a system is served as a "signal switch" with excellent signal-transducing capabilities. When the ordered concatemeric DNA probe structure is anchored on electrode, the response signal of the sensing system is in the "signal on" mode.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2024
Urea electrosynthesis has appeared to meet the nitrogen cycle and carbon neutrality with energy-saving features. Copper can co-electrocatalyze among CO and nitrogen species to generate urea, however developing effective electrocatalysts is still an obstacle. Here, we developed a nitrogen-doped porous carbon loaded with FeCu clusters that convert CO and NO into urea, with the highest Faradaic efficiency of 39.
View Article and Find Full Text PDFLung cancer is a major malignant cancer with low survival rates, and early diagnosis is crucial for effective treatment. Herein, a biosensing platform that is self-powered derived from a capacitor-coupled EBFC has been developed for ultra-sensitive real-time identification of microRNA-21 (miRNA-21) with the assistance of a mobile phone. The flexible substrate of the platform is prepared on a carbon paper modified with graphdiyne and gold nanoparticles.
View Article and Find Full Text PDFThalassemia is a globally prevalent single-gene blood disorder, with nearly 7% of the world's population being carriers. Therefore, the development of specific and sensitive methods for thalassemia detection holds significant importance. Herein, a sandwich-type electrochemical/colorimetric dual-mode biosensor is developed based on gold nanoparticles (AuNPs)/graphdiyne (GDY) and DNA nanoframeworks for ultra-sensitive detection of CD142 gene associated with sickle cell anemia.
View Article and Find Full Text PDFBased on the controllable instantaneous self-assembly ability of long-chain branched DNA nanostructures and the synergistic effect between nucleic acid amplification without enzymes, a highly sensitive and highly specific self-powered biosensing platform is developed. Two-dimensional graphdiyne is prepared, modified on flexible carbon cloth, and then functionalized with gold nanoparticles. When DNA mi-tubes are applied on it, target thalassemia gene CD122 triggers a dual-catalytic hairpin assembly reaction.
View Article and Find Full Text PDFResearch has shown that microRNAs exhibit regular dysregulation in cancers, making them potential biomarkers for cancer diagnosis. However, achieving specific and sensitive detection of microRNAs has been a challenging task. To address this issue, two-dimensional networked graphdiyne is used to fabricate a self-powered biosensor and establish a new approach for ultra-responsive dual-mode detection of miRNA-141, a breast cancer biomarker.
View Article and Find Full Text PDFThalassemia is one of the most common monogenic diseases, which seriously affects human growth and development, cardiovascular system, liver, etc. There is currently no effective cure for this disease, making screening for thalassemia particularly important. Herein, a self-powered portable device with high sensitivity and specificity for efficiently screening of low-level thalassemia is developed which is enabled with AuNPs/MoS@C hollow nanorods and triple nucleic acid amplification technologies.
View Article and Find Full Text PDFOne of the highly attractive research directions in the electrochemiluminescence (ECL) field is how to regulate and improve ECL efficiency. Quantum dots (QDs) are highly promising ECL materials due to their adjustable luminescence size and strong luminous efficiency. MoS NSs@QDs, an ECL emitter, is synthesized via hydrothermal methods, and its ECL mechanism is investigated using cyclic voltammetry and ECL-potential curves.
View Article and Find Full Text PDFMicroRNA-21 (miRNA-21) is currently the only known oncogenic miRNA that is upregulated in almost all malignant tumors and exhibits a broad spectrum of tumor recognition characteristics. It holds significant value in the early diagnosis, malignant degree assessment, and prognostic evaluation of tumors. In this study, a novel dual-mode self-powered sensing platform is developed using Au nanoparticles/graphdiyne as the electrode substrate and combined with DNA nanoring for highly sensitive and specific detection of miRNA-21.
View Article and Find Full Text PDFTwo-dimensional carbon-coated molybdenum disulfide (MoS@C) hollow nanorods are combined with nucleic acid signal amplification strategies and DNA hexahedral nanoframework to construct a novel self-powered biosensing platform for ultra-sensitive dual-mode detection of tumor suppressor microRNA-199a. The nanomaterial is applied on carbon cloth and then modified with glucose oxidase or using as bioanode. A large number of double helix DNA chains are produced on bicathode by nucleic acid technologies including 3D DNA walker, hybrid chain reaction and DNA hexahedral nanoframework to adsorb methylene blue, producing high E signal.
View Article and Find Full Text PDFExploring new highly efficient electrochemiluminescence (ECL) luminophores is a necessary condition for developing ultrasensitive ECL biosensors. Therefore, a luminescent carbon dot-based covalent organic framework (CD-COF) was prepared using aldehyde-based carbon dots (CDs) and 1,3,5-tris (4-aminophenyl) benzene (TPB). Because the CD-COF made the regular arrangement of CDs conducive to improving the ECL response, CD-COF had a higher ECL intensity and efficiency than CDs.
View Article and Find Full Text PDFGraphdiyne oxide quantum dots (GDYO QDs), as derivatives of graphdiyne (GDY), have excellent electroconductibility and luminous properties and can be applied as a new ECL emitter. Herein, an electrochemiluminescence (ECL) biosensor for miRNA-21 ultrasensitive determination is constructed based on AuNPs/GDY, GDYO QD and oligonucleotide signal amplification strategy that integrates DNA walker and hybridization chain reaction (HCR) amplification. As electrode substrate material, AuNPs/GDY can not only bond with the aptamer CP but can also enhance the conductivity of the interface.
View Article and Find Full Text PDFThe latest research shows that the expression level of microRNA-141 can predict the number of prostate cancer cells in the human body and has become an important biomarker. In this paper, an all-carbon sandwich self-powered biosensor based on graphene and carbon cloth is constructed for the highly sensitive detection of the prostate tumor marker miRNA-141. First, gold nanoparticles modified carbon cloth is applied for substrate electrode, and bilirubin oxidase is then immobilized on it to prepare the biocathode of the biofuel cell.
View Article and Find Full Text PDFGraphdiyne (GDY) is an sp and sp co-hydrocarbon allotrope whose particular structure endows it with many fascinating properties, including abundant chemical bonds, high conjugation, natural pores, high carrier mobility, high conductivity and stability, . In this work, two-dimensional graphdiyne is prepared as an electrode substrate material coupling with an exonuclease III-assisted amplification strategy to construct a superior-performance self-powered biosensor based on enzymatic biofuel cells for highly sensitive detection of the tumour marker miRNA-21. Glucose oxidase (GOD) is first immobilized on the GDY/AuNP composite to prepare a bioconjugate.
View Article and Find Full Text PDFBackground: The intracoronary provocation test is expensive and may cause complications. Therefore, we investigated the sensitivity, specificity and safety of different drug- and dose-peripheral artery provocation tests in the diagnosis of coronary artery spasm (CAS).
Methods: The patients who had repeated chest pain as well as both coronary and radial stenoses <50% were selected.
Sildenafil is a prescription drug used to treat pulmonary hypertension and erectile dysfunction. However, the illegal addition of sildenafil to health supplements may be hazardous to human health. Therefore, it is imperative to develop a method for the detection of sildenafil in health products.
View Article and Find Full Text PDFThe utilization of underground working space in the rapidly developing global economy has broadened the scope of human activities. However, it has also brought new challenges to existing environmental construction strategies. The comfort and performance of the people inside a building are influenced by multiple factors.
View Article and Find Full Text PDFChloramphenicol (CAP) is widely used in the food industry and animal husbandry due to its effective antibiotic effect active against gram-positive and gram-negative microorganisms. However, research shows that it can cause serious adverse reactions and side effects in the human body. In order to effectively monitor the residues of CAP, a novel and simple photoelectrochemical (PEC) sensor for sensitive detection of CAP is fabricated based on M-TiO-CdTe QDs/CdS QDs composite.
View Article and Find Full Text PDFIn this study, a Fe-Ni-S/NF hybrid electrode with a hierarchical structure was fabricated via a simple hydrothermal and ion exchange method, and it exhibited remarkable OER performance in an alkaline solution at an ultralow overpotential (1000 mA cm-2@384 mV) and outstanding operational stability.
View Article and Find Full Text PDFAn ultrasensitive electrochemiluminescence (ECL) biosensor was developed based on MIL-53(Al)@CdS QDs and SiO@AuNPs for trichlorfon detection. Metal-organic frameworks (MOFs) were used as a loading platform that provided a large surface area to load targets and modified materials onto the electrode. At the same time, SiO@AuNPs loaded plenty of AuNPs which effectively increased the ECL resonance energy transfer between the CdS QDs, so that the ECL signal was strongly quenched and resulted in an amplified response.
View Article and Find Full Text PDF