Publications by authors named "YeHang Chen"

Introduction: Attention classification based on EEG signals is crucial for brain-computer interface (BCI) applications. However, noise interference and real-time signal fluctuations hinder accuracy, especially in portable single-channel devices. This study proposes a robust Kalman filtering method combined with a norm-constrained extreme learning machine (ELM) to address these challenges.

View Article and Find Full Text PDF

Objective: Accurate preoperative evaluation of myometrial invasion (MI) is essential for treatment decisions in endometrial cancer (EC). However, the diagnostic accuracy of commonly utilized magnetic resonance imaging (MRI) techniques for this assessment exhibits considerable variability. This study aims to enhance preoperative discrimination of absence or presence of MI by developing and validating a multimodal deep learning radiomics (MDLR) model based on MRI.

View Article and Find Full Text PDF

Purpose: To explore the application value of a multimodal deep learning radiomics (MDLR) model in predicting the risk status of postoperative progression in solid stage I non-small cell lung cancer (NSCLC).

Materials And Methods: A total of 459 patients with histologically confirmed solid stage I NSCLC who underwent surgical resection in our institution from January 2014 to September 2019 were reviewed retrospectively. At another medical center, 104 patients were reviewed as an external validation cohort according to the same criteria.

View Article and Find Full Text PDF

The prediction of patient disease risk via computed tomography (CT) images and artificial intelligence techniques shows great potential. However, training a robust artificial intelligence model typically requires large-scale data support. In practice, the collection of medical data faces obstacles related to privacy protection.

View Article and Find Full Text PDF

Background: Deep learning has been used to detect or characterize prostate cancer (PCa) on medical images. The present study was designed to develop an integrated transfer learning nomogram (TLN) for the prediction of PCa and benign conditions (BCs) on magnetic resonance imaging (MRI).

Methods: In this retrospective study, a total of 709 patients with pathologically confirmed PCa and BCs from two institutions were included and divided into training (n = 309), internal validation (n = 200), and external validation (n = 200) cohorts.

View Article and Find Full Text PDF

Objectives: Using contrast-enhanced computed tomography (CECT) and deep learning technology to develop a deep learning radiomics nomogram (DLRN) to preoperative predict risk status of patients with thymic epithelial tumors (TETs).

Methods: Between October 2008 and May 2020, 257 consecutive patients with surgically and pathologically confirmed TETs were enrolled from three medical centers. We extracted deep learning features from all lesions using a transformer-based convolutional neural network and created a deep learning signature (DLS) using selector operator regression and least absolute shrinkage.

View Article and Find Full Text PDF

Purpose: This study aimed to find suitable source domain data in cross-domain transfer learning to extract robust image features. Then, a model was built to preoperatively distinguish lung granulomatous nodules (LGNs) from lung adenocarcinoma (LAC) in solitary pulmonary solid nodules (SPSNs).

Methods: Data from 841 patients with SPSNs from five centres were collected retrospectively.

View Article and Find Full Text PDF

Objectives: To determine whether a CT-based machine learning (ML) can differentiate benign renal tumors from renal cell carcinomas (RCCs) and improve radiologists' diagnostic performance, and evaluate the impact of variable CT imaging phases, slices, tumor sizes, and region of interest (ROI) segmentation strategies.

Methods: Patients with pathologically proven RCCs and benign renal tumors from our institution between 2008 and 2020 were included as the training dataset for ML model development and internal validation (including 418 RCCs and 78 benign tumors), and patients from two independent institutions and a public database (TCIA) were included as the external dataset for individual testing (including 262 RCCs and 47 benign tumors). Features were extracted from three-phase CT images.

View Article and Find Full Text PDF

Transfer learning can improve the robustness of deep learning in the case of small samples. However, when the semantic difference between the source domain data and the target domain data is large, transfer learning easily introduces redundant features and leads to negative transfer. According the mechanism of the human brain focusing on effective features while ignoring redundant features in recognition tasks, a brain-like classification method based on adaptive feature matching dual-source domain heterogeneous transfer learning is proposed for the preoperative aided diagnosis of lung granuloma and lung adenocarcinoma for patients with solitary pulmonary solid nodule in the case of small samples.

View Article and Find Full Text PDF

Objective: To compare the performance of abbreviated breast magnetic resonance imaging (AB-MRI)-based transfer learning (TL) algorithm and radionics analysis for lymphovascular invasion (LVI) prediction in patients with clinically node-negative invasive breast cancer (IBC).

Methods: Between November 2017 and October 2020, 233 clinically node-negative IBCs detected by AB-MRI were retrospectively enrolled. One hundred thirty IBCs from center 1 (37 LVI-positive and 93 LVI-negative) were assigned as the training cohort and 103 from center 2 (25 LVI-positive and 78 LVI-negative) as the validation cohort.

View Article and Find Full Text PDF

Objective: This study aims to differentiate preoperative Borrmann type IV gastric cancer (GC) from primary gastric lymphoma (PGL) by transfer learning radiomics nomogram (TLRN) with whole slide images of GC as source domain data.

Materials And Methods: This study retrospectively enrolled 438 patients with histopathologic diagnoses of Borrmann type IV GC and PGL. They received CT examinations from three hospitals.

View Article and Find Full Text PDF

Background: Deep learning (DL) has been used on medical images to grade, differentiate, and predict prognosis in many tumors.

Purpose: To explore the effect of computed tomography (CT)-based deep learning nomogram (DLN) for predicting cervical cancer lymph node metastasis (LNM) before surgery.

Material And Methods: In total, 418 patients with stage IB-IIB cervical cancer were retrospectively enrolled for model exploration (n = 296) and internal validation (n = 122); 62 patients from another independent institution were enrolled for external validation.

View Article and Find Full Text PDF

Objective: To develop and validate a deep learning nomogram (DLN) model constructed from non-contrast computed tomography (CT) images for discriminating minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC) in patients with subsolid pulmonary nodules (SSPNs).

Materials And Methods: In total, 365 consecutive patients who presented with SSPNs and were pathologically diagnosed with MIA or IAC after surgery, were recruited from two medical institutions from 2016 to 2019. Deep learning features were selected from preoperative CT images using convolutional neural network.

View Article and Find Full Text PDF

Objective: Accurate prediction of postoperative recurrence risk of gastric cancer (GC) is critical for individualized precision therapy. We aimed to investigate whether a computed tomography (CT)-based radiomics nomogram can be used as a tool for predicting the local recurrence (LR) of GC after radical resection.

Materials And Methods: 342 patients (194 in the training cohort, 78 in the internal validation cohort, and 70 in the external validation cohort) with pathologically proven GC from two centers were included.

View Article and Find Full Text PDF

Objective: This study aimed to preoperatively differentiate primary gastric lymphoma from Borrmann type IV gastric cancer by heterogeneity nomogram based on routine contrast-enhanced computed tomographic images.

Methods: We enrolled 189 patients from 2 hospitals (90 in the training cohort and 99 in the validation cohort). Subjective findings, including high-enhanced mucosal sign, high-enhanced serosa sign, nodular or an irregular outer layer of the gastric wall, and perigastric fat infiltration, were assessed to construct a subjective finding model.

View Article and Find Full Text PDF

Objective: To determine the value of a maximum-intensity projection (MIP) image derived from abbreviated breast MRI for excluding occult nipple-areolar complex (NAC) involvement in patients with breast cancer.

Methods: This prospective study included breast cancer patients with clinically normal NACs between April 2016 and May 2019. Abbreviated breast MRI was performed, and an MIP image was generated for each patient.

View Article and Find Full Text PDF

Purpose: To develop a radiomics nomogram based on computed tomography (CT) images that can help differentiate lung adenocarcinomas and granulomatous lesions appearing as sub-centimeter solid nodules (SCSNs).

Materials And Methods: The records of 214 consecutive patients with SCSNs that were surgically resected and histologically confirmed as lung adenocarcinomas (n = 112) and granulomatous lesions (n = 102) from 2 medical institutions between October 2011 and June 2019 were retrospectively analyzed. Patients from center 1 ware enrolled as training cohort (n = 150) and patients from center 2 were included as external validation cohort (n = 64), respectively.

View Article and Find Full Text PDF

Objectives: To evaluate the differential diagnostic performance of a computed tomography (CT)-based deep learning nomogram (DLN) in identifying tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) presenting as solitary solid pulmonary nodules (SSPNs).

Methods: Routine CT images of 550 patients with SSPNs were retrospectively obtained from two centers. A convolutional neural network was used to extract deep learning features from all lesions.

View Article and Find Full Text PDF

Background: Image segmentation is an important part of computer-aided diagnosis (CAD), the segmentation of small ground glass opacity (GGO) pulmonary nodules is beneficial for the early detection of lung cancer. For the segmentation of small GGO pulmonary nodules, an integrated active contour model based on Markov random field energy and Bayesian probability difference (IACM_MRFEBPD) is proposed in this paper.

Methods: First, the Markov random field (MRF) is constructed on the computed tomography (CT) images, then the MRF energy is calculated.

View Article and Find Full Text PDF

Purpose: To investigate the preoperative differential diagnostic performance of a radiomics nomogram in tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) appearing as solitary pulmonary solid nodules (SPSNs).

Method: We retrospectively recruited 426 patients with SPSNs from two centers and assigned them to training (n = 123), internal validation (n = 121), and external validation cohorts (n = 182). A model of deep learning (DL) was built for tumor segmentation from routine computed tomography (CT) images and extraction of 3D radiomics features.

View Article and Find Full Text PDF

In the present study, we aimed to construct a radiomics model using contrast‑enhanced computed tomography (CT) to predict the pathological invasiveness of thymic epithelial tumors (TETs). We retrospectively reviewed the records of 179 consecutive patients (89 females) with histologically confirmed TETs from two hospitals. The 82 low‑ and 97 high‑risk TETs were assigned to training (90 tumors), internal validation (49 tumors) and external validation (40 tumors) cohorts.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the differentiation of computed tomography (CT)-based entropy parameters between minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) lesions appearing as pulmonary subsolid nodules (SSNs).

Methods: This study was approved by the institutional review board in our hospital. From July 2015 to November 2018, 186 consecutive patients with solitary peripheral pulmonary SSNs that were pathologically confirmed as pulmonary adenocarcinomas (74 MIA and 112 IAC lesions) were included and subdivided into the training data set and the validation data set.

View Article and Find Full Text PDF

Background: Lymphovascular invasion (LVI) status facilitates the selection of optimal therapeutic strategy for breast cancer patients, but in clinical practice LVI status is determined in pathological specimens after resection.

Purpose: To explore the use of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI)-based radiomics for preoperative prediction of LVI in invasive breast cancer.

Study Type: Prospective.

View Article and Find Full Text PDF