In order to improve the accuracy of transformer fault diagnosis and improve the influence of unbalanced samples on the low accuracy of model identification caused by insufficient model training, this paper proposes a transformer fault diagnosis method based on SMOTE and NGO-GBDT. Firstly, the Synthetic Minority Over-sampling Technique (SMOTE) was used to expand the minority samples. Secondly, the non-coding ratio method was used to construct multi-dimensional feature parameters, and the Light Gradient Boosting Machine (LightGBM) feature optimization strategy was introduced to screen the optimal feature subset.
View Article and Find Full Text PDF