Recently, structural equation models (SEMs) have been applied for analyzing interrelationships among observed and latent variables in biological and medical research. Latent variables in these models are typically assumed to have a normal distribution. This article considers a Bayesian semparametric SEM with covariates, and mixed continuous and unordered categorical variables, in which the explanatory latent variables in the structural equation are modeled via an appropriate truncated Dirichlet process with a stick-breaking procedure.
View Article and Find Full Text PDFBr J Math Stat Psychol
November 2009
Structural equation modelling has been widely applied in behavioural, educational, medical, social, and psychological research. The classical maximum likelihood estimate is vulnerable to outliers and non-normal data. In this paper, a robust estimation method for the nonlinear structural equation model is proposed.
View Article and Find Full Text PDF