The accuracy of sleep posture assessment in standard polysomnography might be compromised by the unfamiliar sleep lab environment. In this work, we aim to develop a depth camera-based sleep posture monitoring and classification system for home or community usage and tailor a deep learning model that can account for blanket interference. Our model included a joint coordinate estimation network (JCE) and sleep posture classification network (SPC).
View Article and Find Full Text PDFBioengineering (Basel)
August 2023
Biomechanical studies play an important role in understanding the pathophysiology of sleep disorders and providing insights to maintain sleep health. Computational methods facilitate a versatile platform to analyze various biomechanical factors in silico, which would otherwise be difficult through in vivo experiments. The objective of this review is to examine and map the applications of computational biomechanics to sleep-related research topics, including sleep medicine and sleep ergonomics.
View Article and Find Full Text PDFThe objective of this review was to summarize the applications of sonoelastography in testicular tumor identification and inquire about their test performances. Two authors independently searched English journal articles and full conference papers from CINAHL, Embase, IEEE Xplore, PubMed, Scopus, and Web of Science from inception and organized them into a PIRO (patient, index test, reference test, outcome) framework. Eleven studies ( = 11) were eligible for data synthesis, nine of which ( = 9) utilized strain elastography and two ( = 2) employed shear-wave elastography.
View Article and Find Full Text PDFSleep posture has a crucial impact on the incidence and severity of obstructive sleep apnea (OSA). Therefore, the surveillance and recognition of sleep postures could facilitate the assessment of OSA. The existing contact-based systems might interfere with sleeping, while camera-based systems introduce privacy concerns.
View Article and Find Full Text PDFElastography complements traditional medical imaging modalities by mapping tissue stiffness to identify tumors in the endocrine system, and machine learning models can further improve diagnostic accuracy and reliability. Our objective in this review was to summarize the applications and performance of machine-learning-based elastography on the classification of endocrine tumors. Two authors independently searched electronic databases, including PubMed, Scopus, Web of Science, IEEEXpress, CINAHL, and EMBASE.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2022
Ultrasound elastography can quantify stiffness distribution of tissue lesions and complements conventional B-mode ultrasound for breast cancer screening. Recently, the development of computer-aided diagnosis has improved the reliability of the system, whilst the inception of machine learning, such as deep learning, has further extended its power by facilitating automated segmentation and tumour classification. The objective of this review was to summarize application of the machine learning model to ultrasound elastography systems for breast tumour classification.
View Article and Find Full Text PDF