Monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S) exhibit remarkable electronic and optical properties, making them candidates for application within flexible nano-optoelectronics. The ability to achieve a high optical signal, while quantitatively monitoring strain in real-time is the key requirement for applications in flexible sensing and photonics devices. Surface-enhanced Raman scattering (SERS) allows us to achieve both simultaneously.
View Article and Find Full Text PDFRecently, significant attention has been paid to the resistance switching (RS) behaviour in Fe3O4 and it was explained through the analogy of the electrically driven metal-insulator transition based on the quantum tunneling theory. Here, we propose a method to experimentally support this explanation and provide a way to tune the critical switching parameter by introducing self-aligned localized impurities through the growth of Fe3O4 thin films on stepped SrTiO3 substrates. Anisotropic behavior in the RS was observed, where a lower switching voltage in the range of 10(4) V cm(-1) is required to switch Fe3O4 from a high conducting state to a low conducting state when the electrical field is applied along the steps.
View Article and Find Full Text PDFN-doped graphene displays many interesting properties compared with pristine graphene, which makes it a potential candidate in many applications. Here, we report that the Shubnikov-de Haas (SdH) oscillation effect in graphene can be enhanced by N-doping. We show that the amplitude of the SdH oscillation increases with N-doping and reaches around 5k Ω under a field of 14 T at 10 K for highly N-doped graphene, which is over 1 order of magnitude larger than the value found for pristine graphene devices with the same geometry.
View Article and Find Full Text PDF