Publications by authors named "Ye Hwang Cheong"

Background: Breast cancer is one of the most common cancers in women and is closely associated with obesity. Gremlin-2 (GREM2), an antagonist for bone morphogenetic proteins (BMPs), has been considered an inhibitor of adipogenic differentiation in adipose-derived stromal/stem cells. However, the role of GREM2 in breast cancer cells remains largely unknown, and its signaling mechanism has yet to be clarified.

View Article and Find Full Text PDF

Background/aim: Lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) accounts for the majority of non-small cell lung cancer (NSCLC), and overexpression of programmed death ligand 1 (PD-L1) in these cells is known to induce tumor immune evasion or drug resistance. However, detailed studies are needed to determine whether microRNAs (miRNAs) that reduce PD-L1 expression can suppress drug resistance in NSCLC.

Materials And Methods: Kaplan Meier plotter and Receiver Operating Characteristic plotter were used to determine the effect of specific miRNAs on survival and chemotherapy response in NSCLC patients.

View Article and Find Full Text PDF

Background: Gremlin-1 (GREM1) and Gremlin-2 (GREM2) are bone morphogenetic protein antagonists that play important roles in organogenesis, tissue differentiation, and tissue homeostasis. Although GREM1 has been reported to be involved in promoting various cancers, little has been reported about effects of GREM2 on cancer. Recently, it has been reported that GREM2 can inhibit adipogenesis in adipose-derived stromal/stem cells.

View Article and Find Full Text PDF

Diesel exhaust particles (DEPs) are a major cause of cancer progression as well as a variety of acute and chronic diseases. It is well-known that programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that can induce immune escape in tumor cells. However, the function of PD-L1 in bronchial epithelial cells or how PD-L1 relates to cellular oxidation under DEPs-mediated oxidative stress is not well known.

View Article and Find Full Text PDF

DA-1241 is a novel small molecule G protein-coupled receptor 119 (GPR119) agonist in early clinical development for type 2 diabetic patients. This study aimed to elucidate the pharmacological characteristics of DA-1241 for its hypoglycemic action. DA-1241 potently and selectively activated GPR119 with enhanced maximum efficacy.

View Article and Find Full Text PDF

Two pharmacologically distinct types of local protein synthesis are required for synapse- specific long-term synaptic facilitation (LTF) in Aplysia: one for initiation and the other for maintenance. ApCPEB, a rapamycin sensitive prion-like molecule regulates a form of local protein synthesis that is specifically required for the maintenance of the LTF. However, the molecular component of the local protein synthesis that is required for the initiation of LTF and that is sensitive to emetine is not known.

View Article and Find Full Text PDF

Although multiple dipeptidyl peptidase 4 (DPP4) inhibitors have shown glucose-lowering effects by preserving pancreatic cells in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice, the hepatic role in regulation of glucose homeostasis by DPP4 inhibitors in HFD/STZ mice remains elusive. In herein study, parallel comparison of effects on the liver (expression of gluconeogenic genes and the linked signaling molecules) and pancreas (islet morphology and relative area of alpha or beta cells) in combination with glucose-lowering effects were made at the end of 2- and 10-week of evogliptin treatment in HFD/STZ mice. Significant control of hyperglycemia was observed from the second week and persisted during 10-week treatment of 0.

View Article and Find Full Text PDF

Background: Agonists of glucagon-like peptide-1 receptor (GLP-1R) and glucokinase activators (GKA) act as antidiabetic agents by their ability protect beta cells, and stimulate insulin secretion. Oxidative and endoplasmic reticulum (ER) stresses aggravate type 2 diabetes by causing beta cell loss. It was shown that GLP-1R agonists protect beta cells from oxidative and ER stresses.

View Article and Find Full Text PDF

The glucagon-like peptide-1 receptor (GLP-1R) is a target for type 2 diabetes treatment. Due to the inconvenience of peptide therapeutics, small-molecule GLP-1R agonists have been studied. Compound 2 (6,7-dichloro-2-methylsulfonyl-2-N-tert-butylaminoquinoxaline) and compound B (4-(3-(benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine) have been described as small molecule, ago-allosteric modulators of GLP-1R.

View Article and Find Full Text PDF

Aim: To characterize the pharmacodynamic profile of DA-1229, a novel dipeptidyl peptidase (DPP) 4 inhibitor.

Main Methods: Enzyme inhibition assays against DPP4, DPP8 and DPP9. Antidiabetic effects of DA-1229 in HF-DIO mice and young db/db mice.

View Article and Find Full Text PDF

Repeated fluctuation in plasma glucose levels, as well as chronic hyperglycemia, is an important phenomenon frequently observed in diabetic patients. Recently, several studies have reported that glucose fluctuation, compared to chronic hyperglycemia, mediates more adverse effects due to induced oxidative and/or endoplasmic reticulum (ER) stress. In type 2 diabetes, stimulation of insulin secretion by glucagon-like peptide-1 (GLP-1) has been found to be reduced, and the results of recent studies have shown that the expression of the GLP-1 receptor (GLP-1R) is reduced by chronic hyperglycemia.

View Article and Find Full Text PDF

A series of β-amino amide containing substituted piperazine-2-one derivatives was synthesized and evaluated as inhibitors of dipeptidyl pepdidase-4 (DPP-4) for the treatment of type 2 diabetes. As results of intensive SAR study of the series, (R)-4-[(R)-3-amino-4-(2,4,5-trifluorophenyl)-butanoyl]-3-(t-butoxymethyl)-piperazin-2-one (DA-1229) displayed potent DPP-4 inhibition pattern in several animal models, was selected for clinical development.

View Article and Find Full Text PDF