Hypoxic-ischemic (HI) encephalopathy is a cerebrovascular injury caused by oxygen deprivation to the brain and remains a major cause of neonatal mortality and morbidity worldwide. Therapeutic hypothermia is the current standard of care but it does not provide complete neuroprotection. Our aim was to investigate the neuroprotective effect of oleuropein (Ole) in a neonatal (seven-day-old) mouse model of HI.
View Article and Find Full Text PDFAdequate nutrient supply is crucial for the proper development of the embryo. Although nutrient supply is determined by maternal diet, the gut microbiota also influences nutrient availability. While currently there is no cure for neural tube defects (NTDs), their prevention is largely amenable to maternal folic acid and inositol supplementation.
View Article and Find Full Text PDFNeural tube defects (NTDs) are the second most common cause of congenital malformations and are often studied in animal models. Loop-tail (Lp) mice carry a mutation in the Vangl2 gene, a member of the Wnt-planar cell polarity pathway. In Vangl2+/Lp embryos, the mutation induces a failure in the completion of caudal neural tube closure, but only a small percentage of embryos develop open spina bifida.
View Article and Find Full Text PDFNeonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria.
View Article and Find Full Text PDFBackground: Neural tube (NT) closure is a complex developmental process that takes place in the early stages of embryogenesis and that is a key step in neurulation. In mammals, the process by which the neural plate generates the NT requires organized cell movements and tissue folding, and it terminates with the fusion of the apposed ends of the neural folds.
Results: Here we describe how almost identical cellular and molecular machinery is used to fuse the spinal neural folds as that involved in the repair of epithelial injury in the same area of the embryo.
The use of first and second generation antiepileptic drugs during pregnancy doubles the risk of major congenital malformations and other teratogenic defects. Lacosamide (LCM) is a third-generation antiepileptic drug that interacts with collapsing response mediator protein 2, a protein that has been associated with neurodevelopmental diseases like schizophrenia. The aim of this study was to test the potential teratogenic effects of LCM on developing embryos and its effects on behavioural/histological alterations in adult mice.
View Article and Find Full Text PDFBackground: Abnormalities in maternal folate and carbohydrate metabolism have both been shown to induce neural tube defects (NTDs) in humans and animal models. Nevertheless, how these two factors might interact in the development of NTDs remains unclear.
Results: In specific mouse models and embryo culture systems, we assessed the effects of combining maternal diabetes with mutations in genes involved in folate transport and metabolism (methylenetetrahydrofolate reductase [Mthfr] and folic acid receptor 1 [Folr1]).
Biochim Biophys Acta Mol Basis Dis
December 2018
Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q (CoQ) deficiency, suggesting dysregulation of the mevalonate pathway.
View Article and Find Full Text PDFThe last stage of neural tube (NT) formation involves closure of the caudal neural plate (NP), an embryonic structure formed by neuromesodermal progenitors and newly differentiated cells that becomes incorporated into the NT. Here, we show in mouse that, as cell specification progresses, neuromesodermal progenitors and their progeny undergo significant changes in shape prior to their incorporation into the NT. The caudo-rostral progression towards differentiation is coupled to a gradual reliance on a unique combination of complex mechanisms that drive tissue folding, involving pulses of apical actomyosin contraction and planar polarised cell rearrangements, all of which are regulated by the Wnt-PCP pathway.
View Article and Find Full Text PDFDuring apoptosis, cells undergo characteristic morphological changes in which the cytoskeleton plays an active role. The cytoskeleton rearrangements have been mainly attributed to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reorganized during the execution phase of apoptosis forming an apoptotic microtubule network (AMN).
View Article and Find Full Text PDFStable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL-PLAP cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL-PLAP hematopoietic or endothelial cell subset responsible for the long-term reconstituting endothelial cell (LTR-EC) activity and its confinement to FL developmental stages remained unknown.
View Article and Find Full Text PDFThe AMP-activated protein kinase (AMPK) has emerged as an important sensor of signals that control cellular energy balance in all eukaryotes. AMPK is also involved in fatty acid oxidation, glucose transport, antioxidant defense, mitochondrial biogenesis and the modulation of inflammatory processes. The numerous roles of AMPK in cell physiological and pathological states justified the notable increase in the number of publications in previous years, with almost 1500 scientific articles relative to this kinase in 2014.
View Article and Find Full Text PDFGaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.
View Article and Find Full Text PDFEmbryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart.
View Article and Find Full Text PDFIntroduction: Early diagnosis of primary immunodeficiency such as severe combined immunodeficiency (SCID) and X-linked agammaglobulinemia (XLA) improves outcome of affected infants/children. The measurement of T-cell receptor excision circles (TRECS) and kappa-deleting recombination excision circles (KRECS) can identify neonates with severe T or B-cell lymphopenia.
Objectives: To determine TRECS and KRECS levels from prospectively collected dried blood spot samples (DBS) and to correctly identify severe T and B-cell lymphopenia.
Background: Dense-deposit disease (DDD) is a rare glomerulopathy characterized by electron-dense deposits in the glomerular basement membrane. About 50 % of patients with DDD progress to end-stage kidney disease and require dialysis within 10 years of diagnosis, and the disease often recurs after renal transplantation.
Case-diagnosis/treatment: We describe a 14-year-old girl with recurrent DDD in her transplanted kidney.
Abnormalities in maternal folate and carbohydrate metabolism have both been shown to induce neural tube defects (NTD) in humans and animal models. However, the relationship between these two factors in the development of NTDs remains unclear. Data from mothers of children with spina bifida seen at the Unidad de Espina Bífida del Hospital Infantil Virgen del Rocío (case group) were compared to mothers of healthy children with no NTD (control group) who were randomly selected from patients seen at the outpatient ward in the same hospital.
View Article and Find Full Text PDFWe present the case of a 6-year-old boy diagnosed with stage III mediastinal Non Hodgkin Lymphoblastic T cell Lymphoma who suffered from catheter-related bloodstream infection (CRBI) due to Mycobacterium fortuitum whilst receiving chemotherapy. Isolation of this rare pathogen was done directly from blood culture and identification was made rapidly within 48 h using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectro-metry as well as specific polymerase chain reaction (PCR)-reverse hybridization method. This allowed prompt directed antibiotic therapy apart from central venous catheter removal and resulted in an excellent clinical response.
View Article and Find Full Text PDFApoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins.
View Article and Find Full Text PDFBackground: The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear.
Results: We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β, and γ laminin chains and their mRNAs in the early tail bud.
Neural crest cells (NCC) give rise to much of the tissue that forms the vertebrate head and face, including cartilage and bone, cranial ganglia and teeth. In this study we show that conditional expression of a dominant-negative (DN) form of Rho kinase (Rock) in mouse NCC results in severe hypoplasia of the frontonasal processes and first pharyngeal arch, ultimately resulting in reduction of the maxilla and nasal bones and severe craniofacial clefting affecting the nose, palate and lip. These defects resemble frontonasal dysplasia in humans.
View Article and Find Full Text PDF