Background: Mentorship and research experiences are crucial for STEMM career entry and advancement. However, systemic barriers have excluded people from historically underrepresented groups.
Methods: In 2021, a virtual "matchmaking event" was held to connect NIH-funded research mentors with historically underrepresented trainees and initiate mentored research experiences.
Objective: The unprecedented events of 2020 required a pivot in scientific training to better prepare the biomedical research workforce to address global pandemics, structural racism, and social inequities that devastate human health individually and erode it collectively. Furthermore, this pivot had to be accomplished in the virtual environment given the nation-wide lockdown.
Methods: These needs and context led to leveraging of the San Francisco Building Infrastructure Leading to Diversity (SF BUILD) theories of change to innovate a Virtual BUILD Research Collaboratory (VBRC).
Background: The lack of race/ethnic and gender diversity in grants funded by the National Institutes of Health (NIH) is a persistent challenge related to career advancement and the quality and relevance of health research. We describe pilot programs at nine institutions supported by the NIH-sponsored Building Infrastructure Leading to Diversity (BUILD) program aimed at increasing diversity in biomedical research.
Methods: We collected data from the 2016-2017 Higher Education Research Institute survey of faculty and NIH progress reports for the first four years of the program (2015-2018).
We describe the isolation, structure elucidation, and total synthesis of the novel marine natural product rifsaliniketal and the total synthesis of the structurally related variants salinisporamycin and saliniketals A and B. Rifsaliniketal was previously proposed, but not observed, as a diverted metabolite from a biosynthetic precursor to rifamycin S. Decarboxylation of rifamycin provides salinisporamycin, which upon truncation with loss of the naphthoquinone ring leads to saliniketals.
View Article and Find Full Text PDFA challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2013
The polyketide natural product Leptomycin B inhibits nuclear export mediated by the karyopherin protein chromosomal region maintenance 1 (CRM1). Here, we present 1.8- to 2.
View Article and Find Full Text PDFIn this report, we have tested the cytotoxicity of two organotin (OT) compounds by flow cytometry on a panel of immortalized cancer cell lines of human and murine origin. Although the OT compounds exhibited varying levels of cytotoxicity, diphenylmethyltin chloride was more toxic than 1,4-bis (diphenylchlorostannyl)p-xylene on all cell lines tested. The OT compounds were found to be highly cytotoxic to lymphoma cell lines with lower toxicity toward the HeLa cervical cancer cell line.
View Article and Find Full Text PDF