Disclosed herein is an efficient strategy for the synthesis of 2,4,5-trisubstituted pyridines via CuI/NBS-catalyzed formal intermolecular [2+2+2] cycloaddition of easily available primary amines and nonactivated terminal alkynes. Moreover, this given reaction features a new mode of cycloaddition with high regio- and chemoselectivity, good atom- and step-economy, broad substrate scope, and wide functional group compatibility. Further mechanism studies indicate that this transformation starts with oxidative alkynylation of the amine to form a propargylamine intermediate, followed by radical addition to the alkyne and intramolecular cycloaddition, delivering the pharmacologically interesting multisubstituted pyridines.
View Article and Find Full Text PDFCarboxylic acids are widely found in natural products and bioactive molecules and have served as raw material compounds in industry. We now report the first example of copper(I)-catalyzed carboxyl transfer annulation of propiolic acids with amines, thereby chemodivergently constructing the oxazolidine-2-ones. In this reaction, two kinds of key propargyamine intermediates were formed through sequential CuI/NBS-catalyzed oxidative deamination/decarboxylative alkynylation or CuI-catalyzed decarboxylative hydroamination/alkynylation.
View Article and Find Full Text PDF