In the male germline, the machinery to repress retrotransposons that threaten genomic integrity via the piRNA pathway is established in gonocytes. It has been reported that disruption of the piRNA pathway leads to activation of retrotransposons and arrests spermatogenesis before it enters the second meiosis; however, its effects on gonocytes have not been fully elucidated. In this study, we analyzed the effects of Asz1 deletion, which is a crucial component of the piRNA pathway, on the gonocyte transcriptome.
View Article and Find Full Text PDFHistochem Cell Biol
March 2022
In vitro systems capable of reconstituting the process of mouse oogenesis are now being established to help develop further understanding of the mechanisms underlying oocyte/follicle development and differentiation. These systems could also help increase the production of useful livestock or genetically modified animals, and aid in identifying the causes of infertility in humans. Recently, we revealed, using an in vitro system for recapitulating oogenesis, that the activation of the estrogen signaling pathway induces abnormal follicle formation, that blocking estrogen-induced expression of anti-Müllerian hormone is crucial for normal follicle formation, and that the production of α-fetoprotein in fetal liver tissue is involved in normal in vivo follicle formation.
View Article and Find Full Text PDFMammalian ovaries contain a large number of immature follicles. Follicular culture can contribute to the production of fertile oocytes from latent immature follicles, providing a useful tool for exploring the developmental competencies and related factors that oocytes acquire during growth. However, the potential of oocytes produced by follicular culture is limited.
View Article and Find Full Text PDFIn vitro generation of fertile oocytes has been reported in several mammalian species. However, oocyte integrity is compromised by in vitro culture. Here, we aimed to understand the factors affecting oocyte competency by evaluating mitochondrial function and transcriptome as well as lipid metabolism in in vivo-derived oocytes and in vitro grown and matured (IVGM) oocytes under atmospheric (20%) and physiological (7%) O2 concentration.
View Article and Find Full Text PDFZebrafish has become an ideal model to study the ovarian development of vertebrates. The follicle is the basic unit of the ovary, which consists of oocytes and surrounding follicular cells. It is vital to separate both follicular cells and oocytes for various research purposes such as for primary culture of follicular cells, analysis of gene expression, oocyte maturation and in vitro fertilization, etc.
View Article and Find Full Text PDFConditional knockout technology is a powerful tool for investigating the spatiotemporal functions of target genes. However, generation of conditional knockout mice involves complicated breeding programs and considerable time. A recent study has shown that artificially designed microRNAs (amiRNAs), inserted into an intron of the constitutively expressed gene, induce knockdown of the targeted gene in mice, thus creating a simpler method to analyze the functions of target genes in oocytes.
View Article and Find Full Text PDFIn mammals, primordial follicles assembled in fetuses or during infancy constitute the oocyte resources for life. Exposure to 17beta-estradiol and phytogenic or endocrine-disrupting chemicals during pregnancy and/or the perinatal period leads to the failure of normal follicle formation. However, the mechanisms underlying estrogen-mediated abnormal follicle formation and physiological follicle formation in the presence of endogenous natural estrogen are not well understood.
View Article and Find Full Text PDFRNA aptamers have garnered attention for diagnostic applications due to their ability to recognize diverse targets. Oligomers of 42-mer amyloid β-protein (Aβ42), whose accumulation is relevant to the pathology of Alzheimer's disease (AD), are among the most difficult molecules for aptamer recognition because they are prone to aggregate in heterogeneous forms. In addition to designing haptens for in vitro selection of aptamers, the difficulties involved in determining their effect on Aβ42 oligomerization impede aptamer research.
View Article and Find Full Text PDFDnmt3a2, a DNA methyltransferase, is induced by neuronal activity and participates in long-term memory formation with the increased expression of synaptic plasticity genes. We wanted to determine if Dnmt3a2 with its partner Dnmt3L may influence motor behavior via the dopaminergic system. To this end, we generated a mouse line, Dnmt3a2/3L, with dopamine transporter (DAT) promotor driven Dnmt3a2/3L overexpression.
View Article and Find Full Text PDFOligomers of β-amyloid 42 (Aβ42), rather than fibrils, drive the pathogenesis of Alzheimer's disease (AD). In particular, toxic oligomeric species called protofibrils (PFs) have attracted significant attention. Herein, we report RNA aptamers with higher affinity toward PFs derived from a toxic Aβ42 dimer than toward fibrils produced from WT Aβ42 or from a toxic, conformationally constrained Aβ42 variant, E22P-Aβ42.
View Article and Find Full Text PDFDNA methylation is generally known to inactivate gene expression. The DNA methyltransferases (DNMTs), DNMT3A and DNMT3B, catalyze somatic cell lineage-specific DNA methylation, while DNMT3A and DNMT3L catalyze germ cell lineage-specific DNA methylation. How such lineage- and gene-specific DNA methylation patterns are created remains to be elucidated.
View Article and Find Full Text PDFMammalian fetal ovaries contain numerous primordial germ cells (PGCs), although few mature oocytes are obtained from females, owing to apoptosis and follicle atresia. The regulatory mechanisms underlying oogenesis/folliculogenesis remain unknown. Development of methods for obtaining mature oocytes from PGCs in fetal ovaries in vitro could contribute to clarifying these mechanisms.
View Article and Find Full Text PDFThis protocol is an extension to: Nat. Protoc. 8, 1513-1524 (2013); doi: 10.
View Article and Find Full Text PDFVarious complex molecular events in oogenesis cannot be observed in vivo. As a bioengineering technique for female reproductive tissues, in vitro culture systems for female germ cells have been used to analyze oogenesis and preserve germ cells for over 20 years. Recently, we have established a new methodological approach for the culture of primordial germ cells (PGCs) and successfully obtained offspring.
View Article and Find Full Text PDFThe female germ line undergoes a unique sequence of differentiation processes that confers totipotency to the egg. The reconstitution of these events in vitro using pluripotent stem cells is a key achievement in reproductive biology and regenerative medicine. Here we report successful reconstitution in vitro of the entire process of oogenesis from mouse pluripotent stem cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
Reconstituting gametogenesis in vitro is a key goal for reproductive biology and regenerative medicine. Successful in vitro reconstitution of primordial germ cells and spermatogenesis has recently had a significant effect in the field. However, recapitulation of oogenesis in vitro remains unachieved.
View Article and Find Full Text PDFJ Reprod Dev
January 2017
In vitro growth of immature oocytes provides opportunities to increase gametic resources and to understand the mechanisms underlying oocyte development. Many studies on the in vitro growth of oocytes have been reported thus far; however, only a few cases have been reported, which demonstrated that oocytes can support full-term development after in vitro fertilization. Our research group recently found that culture of mouse neonatal primordial follicles increased the birthrate; however, the establishment of an in vitro system that can completely mimic follicle or oocyte growth in vivo and control oogenesis remains an ongoing challenge.
View Article and Find Full Text PDFTransgenic mice are essential research tools in developmental biology studies. The 2A peptide allows multiple genes to be expressed simultaneously at comparable levels in somatic cells, but there are no reports of it being used successfully in germ cells. We constructed a Cre/loxP-based conditional vector containing the 2A peptide to significantly enhance the expression of a reporter and target gene from a constitutive promoter in oocytes.
View Article and Find Full Text PDFIn mammals, genomic imprinting governed by DNA methyltransferase DNMT3A and its cofactor DNMT3L is essential for functional gametes. Oocyte-specific methylation imprints are established during oocyte growth concomitant with DNMT3A/DNMT3L expression, although the mechanisms of oocyte-specific imprinting are not fully understood. To determine whether the presence of DNMT3A/DNMT3L in oocytes is sufficient for acquisition of methylation imprints, we produced transgenic mice to induce DNMT3A/DNMT3L expression prematurely in oogenesis and analyzed DNA methylation imprints.
View Article and Find Full Text PDFDNA methylation imprints that are established in spermatogenesis and oogenesis are essential for functional gametes. However, the mechanisms underlying gamete-specific imprinting remain unclear. In this study, we investigated whether male and female gametes derived from newborn mice are epigenetically plastic and whether DNA methylation imprints are influenced by the niche surrounding the nuclei of the gametes.
View Article and Find Full Text PDFThe oocytes of B6.Y(TIR) sex-reversed female mouse mature in culture but fail to develop after fertilization because of their cytoplasmic defects. To identify the defective components, we compared the gene expression profiles between the fully-grown oocytes of B6.
View Article and Find Full Text PDFGenome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region.
View Article and Find Full Text PDFIn mammals, both parental genomes are essential for normal ontogeny because epigenetic modifications imposed in the parents' gametes lead to parent-of-origin specific gene expression in their offspring. These phenomena are referred to as genomic imprinting. It has been shown that maternal imprinting is established during oocyte growth, lack of maternal imprinting in zygotes leads to early embryonic death, and in vitro system that allows establishment of maternal imprinting is developed.
View Article and Find Full Text PDF