Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260-nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260-nm CD bands.
View Article and Find Full Text PDFHuman hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by 'cooperativity'. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected.
View Article and Find Full Text PDFAmong the four types of hemoglobin (Hb) M with a substitution of a tyrosine (Tyr) for either the proximal (F8) or distal (E7) histidine in the alpha or beta subunits, only Hb M Saskatoon (betaE7Tyr) assumes a hexacoordinate structure and its abnormal subunits can be reduced readily by methemoglobin (metHb) reductase. This is distinct from the other three M Hbs. To gain new insight into the cause of the difference, we examined the ionization states of E7 and F8 Tyrs by UV resonance Raman (RR) spectroscopy and Fe-O(Tyr) bonding by visible RR spectroscopy.
View Article and Find Full Text PDFWe found that recombinant human adult hemoglobin (rHb A) expressed in Escherichia coli showed heterogeneity of components with the intensity of a positive CD band at 260 nm and that it could be resolved into three components (SP-1, SP-2, and SP-3) by SP-Sepharose column chromatography. 1H NMR revealed that SP-1 is identical with native Hb A, while SP-2 and SP-3 largely contain the reversed heme isomer in both the alpha and beta subunits, with contents of approximately 50 and >80% in SP-2 and SP-3, respectively. Rotation of the heme 180 degrees about the 5,15-meso axis (reversed heme) causes an interexchange of the methyl groups at positions 2 and 7 with the vinyl groups at positions 8 and 3, respectively.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2007
Oxygenation properties of hemoglobin (Hb) from Oligobrachia mashikoi were extensively investigated. Compared to human Hb, Oligobrachia Hb showed a high oxygen affinity (P(50)=1.4 mmHg), low cooperativity (n =1.
View Article and Find Full Text PDF