Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids.
View Article and Find Full Text PDFNonspecific interactions play a significant role in physiological activities, surface chemical modification, and artificial adhesives. However, nonspecificity sometimes causes sticky problems, including surface fouling, decreased target specificity, and artifacts in single-molecule measurements. Adjusting the liquid pH, using protein-blocking additives, adding nonionic surfactants, or increasing the salt concentration are common methods to minimize nonspecific binding to achieve high-quality data.
View Article and Find Full Text PDFExtracellular vesicles play crucial roles in intercellular communication in the tumor microenvironment. Here we demonstrate that in hepatic fibrosis, TGF-β stimulates the palmitoylation of hexokinase 1 (HK1) in hepatic stellate cells (HSCs), which facilitates the secretion of HK1 via large extracellular vesicles in a TSG101-dependent manner. The large extracellular vesicle HK1 is hijacked by hepatocellular carcinoma (HCC) cells, leading to accelerated glycolysis and HCC progression.
View Article and Find Full Text PDFPurpose: The aim of this study was to investigate the expression levels of plasma miR-30a-5p, miR-101-3p, miR-140-3p and miR-141-3p and their relationship to dexmedetomidine efficacy and adverse effects in pediatric patients.
Methods: The expression levels of miR-30a-5p, miR-101-3p, miR-140-3p and miR-141-3p were measured by qRT-PCR in plasma of 133 pediatric patients receiving dexmedetomidine for preoperative sedation. We analyzed the relationship between miRNA abundance and dexmedetomidine response, including sedative effect and adverse effects, and assessed the predictive power of miRNAs for drug response.
The biosensors based on aptamer based stimuli-responsive hydrogels have the characters of high specificity, good stability, portability. Electronic balance is one of the most accurate equipment and can be reached nearly in all labs. Aflatoxin B (AFB) is highly toxic and carcinogenic to humans and animals, it is necessary to develop simple and convenient detection method to apply in resource limited area.
View Article and Find Full Text PDFLead ions (Pb) cause harm to human health. Therefore, the development of fast, effective, and convenient sensors for Pb monitoring has received great attention. In this study, a portable method has been proposed for Pb detection using normal electronic balance as a readout.
View Article and Find Full Text PDFA sensitive and homogeneous electrochemical aptasensor was fabricated for the detection of mucin 1 (MUC1) by combining a well-designed DNA bulge-loop (L-DNA) structure with high-efficient exonuclease I (Exo I)-assisted target recycling amplification strategy. The L-DNA probe was constructed via the hybridization of the MUC1 aptamer and methylene blue (MB) labeled complementary DNA (cDNA) (cDNA-MB) and hence could not diffuse freely to the negatively charged ITO electrode surface due to the strong electrostatic repulsion, so small electrochemical signal was detected. The addition of MUC1 caused the dissociation of L-DNA structure due to the specificity between aptamer and MUC1.
View Article and Find Full Text PDFObjective: To study the effects of constraint-induced movement therapy (CIMT) relative to traditional intervention on motor-control strategies for upper-arm reaching and motor performance at the impairment and functional levels in stroke patients.
Design: Two-group randomized controlled trial (RCT); pretreatment and posttreatment measures.
Setting: Rehabilitation clinics.