Polymorphisms and the overexpression of transporter genes, especially of the ATP-binding cassette superfamily, have been involved in antimalarial drug resistance. The objective of this study was to use 77 Senegalese isolates to evaluate the association between the number of Asn residues in the polymorphic microsatellite region of the multidrug resistance 6 gene (Pf) and the susceptibility to antimalarials. A significant association was observed between the presence of 7 or 9 Asn repeats and reduced susceptibility to quinine.
View Article and Find Full Text PDFBackground: To determine the impact of the introduction of artemisinin-based combination therapy (ACT) on parasite susceptibility, a molecular surveillance for antimalarial drug resistance was conducted on local isolates from the Hôpital Principal de Dakar between November 2013 and January 2014 and between August 2014 and December 2014.
Methods: The prevalence of genetic polymorphisms in antimalarial resistance genes (pfcrt, pfmdr1, pfdhfr and pfdhps) was evaluated in 103 isolates.
Results: The chloroquine-resistant haplotypes CVIET and CVMET were identified in 31.
The RING E3 ubiquitin protein ligase is crucial for facilitating the transfer of ubiquitin. The only polymorphism identified in the E3 ubiquitin protein ligase gene was the D113N mutation (62.5%) but was not significantly associated with the 50% inhibitory concentration (IC50) of conventional antimalarial drugs.
View Article and Find Full Text PDFWe successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August-December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.
View Article and Find Full Text PDFOur team in Europe has developed the routine clinical laboratory identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). To evaluate the utility of MALDI-TOF MS in tropical Africa in collaboration with local teams, we installed an apparatus in the Hôpital Principal de Dakar (Senegal), performed routine identification of isolates, and confirmed or completed their identification in France. In the case of discordance or a lack of identification, molecular biology was performed.
View Article and Find Full Text PDFThe kelch 13 (K13) propeller gene is associated with artemisinin resistance. In a previous work, there were no mutations found in 138 Plasmodium falciparum isolates collected in 2012 and 2013 from patients residing in Dakar, Senegal (M. Torrentino-Madamet et al.
View Article and Find Full Text PDFBackground: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria. Since the introduction of ACT, there have been very few reports on the level of Plasmodium falciparum resistance to anti-malarial drugs. An ex vivo susceptibility study was conducted on local isolates obtained from the Hôpital Principal de Dakar (Dakar, Senegal) from November 2013 to January 2014.
View Article and Find Full Text PDFMatrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) represents a revolution in routine pathogen identification in clinical microbiology laboratories. A MALDI-TOF MS was introduced to tropical Africa in the clinical microbiology laboratory of the Hôpital Principal de Dakar (Senegal) and used for routine pathogen identification. Using MS, 2,429 bacteria and fungi isolated from patients were directly assayed, leading to the identification of 2,082 bacteria (85.
View Article and Find Full Text PDFBackground: The emergence of Plasmodium falciparum resistance to artemisinin and its derivatives, manifested as delayed parasite clearance following the treatment, has developed in Southeast Asia. The spread of resistance to artemisinin from Asia to Africa may be catastrophic for malaria control and elimination worldwide. Recently, mutations in the propeller domain of the Kelch 13 (k13) gene (PF3D71343700) were associated with in vitro resistance to artemisinin and with delayed clearance after artemisinin treatment in southern Asia.
View Article and Find Full Text PDFThe involvement of Pfmdr1 (Plasmodium falciparum multidrug resistance 1) polymorphisms in antimalarial drug resistance is still debated. Here, we evaluate the association between polymorphisms in Pfmdr1 (N86Y, Y184F, S1034C, N1042D, and D1246Y) and Pfcrt (K76T) and in vitro responses to chloroquine (CQ), mefloquine (MQ), lumefantrine (LMF), quinine (QN), monodesethylamodiaquine (MDAQ), and dihydroartemisinin (DHA) in 174 Plasmodium falciparum isolates from Dakar, Senegal. The Pfmdr1 86Y mutation was identified in 14.
View Article and Find Full Text PDFBackground: Although the World Health Organization recommends replacing quinine (QN) by artesunate due to its increased efficacy and the higher tolerance to the drug in both adults and children, QN remains a first-line treatment for severe malaria, especially in Africa. Investigations of microsatellite Pfnhe-1 ms4760 polymorphisms in culture-adapted isolates from around the world have revealed that an increase in the number of DNNND amino acid motifs was associated with decreased QN susceptibility, whereas an increase in the number of DDNHNDNHNND motifs was associated with increased QN susceptibility.
Methods: In this context, to further analyse associations between Pfnhe-1 ms4760 polymorphisms and QN susceptibility, 393 isolates freshly collected between October 2009 and January 2010 and July 2010 and February 2011, respectively, at the Hôpital Principal de Dakar, Senegal were assessed ex vivo for QN susceptibility, and their genes were amplified and sequenced.
Background: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria. Since the introduction of ACT, there have been very few reports on the level of resistance of P. falciparum to anti-malarial drugs.
View Article and Find Full Text PDFBackground: An accurate diagnosis is essential for the rapid and appropriate treatment of malaria. The accuracy of the histidine-rich protein 2 (PfHRP2)-based rapid diagnostic test (RDT) Palutop+4® was assessed here. One possible factor contributing to the failure to detect malaria by this test is the diversity of the parasite PfHRP2 antigens.
View Article and Find Full Text PDFBackground: As a result of the widespread resistance to chloroquine and sulphadoxine-pyrimethamine, artemisinin-based combination therapy (ACT) (including artemether-lumefantrine and artesunate-amodiaquine) has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Intermittent preventive treatments with anti-malarial drugs based on sulphadoxine-pyrimethamine are also given to children or pregnant women once per month during the transmission season. Since 2006, there have been very few reports on the susceptibility of Plasmodium falciparum to anti-malarial drugs.
View Article and Find Full Text PDFBackground: As a result of widespread chloroquine and sulphadoxine-pyrimethamine resistance, artemisinin-based combination therapy (ACT) (which includes artemether-lumefantrine and artesunate-amodiaquine) has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Since then, there have been very few reports on the ex vivo susceptibility of Plasmodium falciparum to anti-malarial drugs. To examine whether parasite susceptibility has been affected by the widespread use of ACT, the ex vivo susceptibility of local isolates was assessed at the military hospital of Dakar.
View Article and Find Full Text PDF