Publications by authors named "Yaya Cui"

Irreversible fibrosis following myocardial infarction (MI) stiffens the infarcted myocardium, which remains challenging to restore. This study aimed to investigate whether the injectable RLP12 hydrogel, derived from recombinant resilin protein, could serve as a vehicle for stem cells to enhance the function of the infarcted myocardium. The RLP12 hydrogel was prepared and injected into the myocardium of rats with MI, and brown adipose-derived mesenchymal stem cells (BADSCs) were loaded.

View Article and Find Full Text PDF

The widespread use of polychlorophenols poses enormous environmental challenges. Biochar has the potential to accelerate the transformation of polychlorophenols. But the biochar-triggered photochemical decomposition mechanism of polychlorophenols still remains unclear.

View Article and Find Full Text PDF

Nodule organogenesis in legumes is regulated temporally and spatially through gene networks. Genome-wide transcriptome, proteomic, and metabolomic analyses have been used previously to define the functional role of various plant genes in the nodulation process. However, while significant progress has been made, most of these studies have suffered from tissue dilution since only a few cells/root regions respond to rhizobial infection, with much of the root non-responsive.

View Article and Find Full Text PDF

Microbe associated molecular pattern (MAMPs) triggered immunity (MTI) is a key component of the plant innate immunity response to microbial recognition. However, most of our current knowledge of MTI comes from model plants (i.e.

View Article and Find Full Text PDF

Target leaf spot (TLS) of sorghum, a foliar disease caused by the necrotrophic fungus Bipolaris cookei (also known as Bipolaris sorghicola), can affect grain yield in sorghum by causing premature drying of leaves and defoliation. Two sorghum recombinant inbred line (RIL) populations, BTx623/BTx642 and BTx623/SC155-14E, were assessed for TLS resistance in replicated trials. Using least square mean trait data, four TLS resistance QTL were identified, two in each population.

View Article and Find Full Text PDF

Visceral hypersensitivity is one of the most common symptoms in patients with post-inflammatory-irritable bowel syndrome (PI-IBS). Enterochromaffin (EC) cells and 5-hydroxytryptamine (5-HT) are important in the development of visceral hyperalgesia, and EC cells are influenced by helper T-cell subtype 1 or 2 cytokine predominant environments. In the present study, the analgesic effect of cynaropicrin and its underlying mechanism on the treatment of trinitrobenzene sulfonic (TNBS)-induced PI-IBS visceral hyperalgesia rats was investigated.

View Article and Find Full Text PDF

Serotonin (5-HT) is an important neurotransmitter and paracrine signaling molecule in the gastrointestinal tract. Two distinct tryptophan hydroxylases (TPH), TPH1 and TPH2, are the rate-limiting enzymes in the 5-HT biosynthesis process. TPH1 expression is mainly limited in the enterochromaffin cells and distributed in peripheries such as the skin and gut, while TPH2 is the predominant isoform in the CNS.

View Article and Find Full Text PDF

Background: The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community.

View Article and Find Full Text PDF

Soybean (Glycine max) is a major plant source of protein and oil and produces important secondary metabolites beneficial for human health. As a tool for gene function discovery and improvement of this important crop, a mutant population was generated using fast neutron irradiation. Visual screening of mutagenized seeds identified a mutant line, designated MO12, which produced brown seeds as opposed to the yellow seeds produced by the unmodified Williams 82 parental cultivar.

View Article and Find Full Text PDF

Cell identity and function are largely determined by specific gene expression patterns and ultimately by the proteome. Current high-throughput sequencing technologies offer the possibility of quantifying gene expression at high resolution, with minimum input and without the constraints of array-based systems, such as the need for specific probes. In addition, techniques are now available to capture genes that are actively being translated.

View Article and Find Full Text PDF

Background: Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which also generates trans fats.

View Article and Find Full Text PDF

Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture.

View Article and Find Full Text PDF

Soybean (Glycine max [L.] Merr.) is a major crop species and, therefore, a major target of genomic and genetic research.

View Article and Find Full Text PDF

Erwinia carotovora subsp. carotovora causes soft-rotting (tissue-macerating) disease in many plants and plant organs. Although pectinases are the primary determinants of virulence, several ancillary factors that augment bacterial virulence have also been identified.

View Article and Find Full Text PDF

RsmC and FlhDC are global regulators controlling extracellular proteins/enzymes, rsmB RNA, motility, and virulence of Erwinia carotovora subsp. carotovora. FlhDC, the master regulator of flagellar genes, controls these traits by positively regulating gacA, fliA, and rsmC and negatively regulating hexA.

View Article and Find Full Text PDF

Pseudomonas syringae pv. tomato strain DC3000, a pathogen of tomato and Arabidopsis, occurs as an epiphyte. It produces N-acyl homoserine lactones (AHLs) which apparently function as quorum-sensing signals.

View Article and Find Full Text PDF

The N-acylhomoserine lactone (AHL) signaling system comprises a producing system that includes acylhomoserine synthase (AhlI, a LuxI homolog) and a receptor, generally a LuxR homolog. AHL controls exoprotein production in Erwinia carotovora and consequently the virulence for plants. In previous studies we showed that ExpR, a LuxR homolog, is an AHL receptor and that it activates transcription of rsmA, the gene encoding an RNA binding protein which is a global negative regulator of exoproteins and secondary metabolites.

View Article and Find Full Text PDF

In Erwinia carotovora subspecies, N-acyl homoserine lactone (AHL) controls the expression of various traits, including extracellular enzyme/protein production and pathogenicity. We report here that E. carotovora subspecies possess two classes of quorum-sensing signaling systems defined by the nature of the major AHL analog produced as well as structural and functional characteristics of AHL synthase (AhlI) and AHL receptor (ExpR).

View Article and Find Full Text PDF

N-acyl homoserine lactone (AHL) is required by Erwinia carotovora subspecies for the expression of various traits, including extracellular enzyme and protein production and pathogenicity. Previous studies with E. carotovora subsp.

View Article and Find Full Text PDF

The plant pathogen Erwinia chrysanthemi produces a variety of factors that have been implicated in its ability to cause soft-rot diseases in various hosts. These include HrpN, a harpin secreted by the Hrp type III secretion system; PelE, one of several major pectate lyase isozymes secreted by the type II system; and PelL, one of several secondary Pels secreted by the type II system. We investigated these factors in E.

View Article and Find Full Text PDF

Concerted investigations of factors affecting host-pathogen interactions are now possible with the model plant Arabidopsis thaliana and its model pathogen Pseudomonas syringae pv. tomato DC3000, as their whole genome sequences have become available. As a prelude to analysis of the regulatory genes and their targets, we have focused on GacA, the response regulator of a two-component system.

View Article and Find Full Text PDF

In Erwinia carotovora subsp. carotovora (Ecc) strain 71 (Ecc71), HrpL(Ecc), an alternate sigma factor of the extracytoplasmic function subfamily, plays a central role in the expression of the hrp (hypersensitive reaction and pathogenicity) regulon. We document here that sigma-54 (RpoN) is required for full expression of hrpL(Ecc) and that HrpS, in conjunction with sigma-54, activates hrpL(Ecc) transcription.

View Article and Find Full Text PDF

Summary Erwinia carotovora ssp. carotovora (Ecc) possesses hrpN(Ecc)[hrp = gene for hypersensitive reaction (HR) and pathogenicity], the structural gene for Harpin(Ecc), the inducer of the HR-like response and genes for the type III secretion system. In Ecc, RsmA, an RNA-binding protein responsible for the accelerated decay of RNA species, tightly controls the expression of the Hrp regulon.

View Article and Find Full Text PDF